AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Binding Sites

Showing 141 to 150 of 467 articles

Clear Filters

Characterizing collaborative transcription regulation with a graph-based deep learning approach.

PLoS computational biology
Human epigenome and transcription activities have been characterized by a number of sequence-based deep learning approaches which only utilize the DNA sequences. However, transcription factors interact with each other, and their collaborative regulat...

Translating from Proteins to Ribonucleic Acids for Ligand-binding Site Detection.

Molecular informatics
Identifying druggable ligand-binding sites on the surface of the macromolecular targets is an important process in structure-based drug discovery. Deep-learning models have been shown to successfully predict ligand-binding sites of proteins. As a ste...

ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction.

Nature methods
Predicting the functional sites of a protein from its structure, such as the binding sites of small molecules, other proteins or antibodies, sheds light on its function in vivo. Currently, two classes of methods prevail: machine learning models built...

Prediction of protein-ligand binding affinity from sequencing data with interpretable machine learning.

Nature biotechnology
Protein-ligand interactions are increasingly profiled at high throughput using affinity selection and massively parallel sequencing. However, these assays do not provide the biophysical parameters that most rigorously quantify molecular interactions....

Differences in ligand-induced protein dynamics extracted from an unsupervised deep learning approach correlate with protein-ligand binding affinities.

Communications biology
Prediction of protein-ligand binding affinity is a major goal in drug discovery. Generally, free energy gap is calculated between two states (e.g., ligand binding and unbinding). The energy gap implicitly includes the effects of changes in protein dy...

DeepBtoD: Improved RNA-binding proteins prediction via integrated deep learning.

Journal of bioinformatics and computational biology
RNA-binding proteins (RBPs) have crucial roles in various cellular processes such as alternative splicing and gene regulation. Therefore, the analysis and identification of RBPs is an essential issue. However, although many computational methods have...

Prediction of the transcription factor binding sites with meta-learning.

Methods (San Diego, Calif.)
With the accumulation of ChIP-seq data, convolution neural network (CNN)-based methods have been proposed for predicting transcription factor binding sites (TFBSs). However, biological experimental data are noisy, and are often treated as ground trut...

FCNGRU: Locating Transcription Factor Binding Sites by Combing Fully Convolutional Neural Network With Gated Recurrent Unit.

IEEE journal of biomedical and health informatics
Deciphering the relationship between transcription factors (TFs) and DNA sequences is very helpful for computational inference of gene regulation and a comprehensive understanding of gene regulation mechanisms. Transcription factor binding sites (TFB...

Chromatin interaction-aware gene regulatory modeling with graph attention networks.

Genome research
Linking distal enhancers to genes and modeling their impact on target gene expression are longstanding unresolved problems in regulatory genomics and critical for interpreting noncoding genetic variation. Here, we present a new deep learning approach...

Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4.

Journal of computer-aided molecular design
Modern molecular docking comprises the prediction of pose and affinity. Prediction of docking poses is required for affinity prediction when three-dimensional coordinates of the ligand have not been provided. However, a large number of feature engine...