AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Binding Sites

Showing 81 to 90 of 467 articles

Clear Filters

Drug-Online: an online platform for drug-target interaction, affinity, and binding sites identification using deep learning.

BMC bioinformatics
BACKGROUND: Accurately identifying drug-target interaction (DTI), affinity (DTA), and binding sites (DTS) is crucial for drug screening, repositioning, and design, as well as for understanding the functions of target. Although there are a few online ...

Binding Mechanism of Inhibitors to BRD4 and BRD9 Decoded by Multiple Independent Molecular Dynamics Simulations and Deep Learning.

Molecules (Basel, Switzerland)
Bromodomain 4 and 9 (BRD4 and BRD9) have been regarded as important targets of drug designs in regard to the treatment of multiple diseases. In our current study, molecular dynamics (MD) simulations, deep learning (DL) and binding free energy calcula...

Encoding the space of protein-protein binding interfaces by artificial intelligence.

Computational biology and chemistry
The physical interactions between proteins are largely determined by the structural properties at their binding interfaces. It was found that the binding interfaces in distinctive protein complexes are highly similar. The structural properties underl...

ProtTrans and multi-window scanning convolutional neural networks for the prediction of protein-peptide interaction sites.

Journal of molecular graphics & modelling
This study delves into the prediction of protein-peptide interactions using advanced machine learning techniques, comparing models such as sequence-based, standard CNNs, and traditional classifiers. Leveraging pre-trained language models and multi-vi...

Genome-scale annotation of protein binding sites via language model and geometric deep learning.

eLife
Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accuratel...

PeSTo-Carbs: Geometric Deep Learning for Prediction of Protein-Carbohydrate Binding Interfaces.

Journal of chemical theory and computation
The Protein Structure Transformer (PeSTo), a geometric transformer, has exhibited exceptional performance in predicting protein-protein binding interfaces and distinguishing interfaces with nucleic acids, lipids, small molecules, and ions. In this st...

CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites.

Computers in biology and medicine
Circular RNAs (circRNAs) have surfaced as important non-coding RNA molecules in biology. Understanding interactions between circRNAs and RNA-binding proteins (RBPs) is crucial in circRNA research. Existing prediction models suffer from limited availa...

EPDRNA: A Model for Identifying DNA-RNA Binding Sites in Disease-Related Proteins.

The protein journal
Protein-DNA and protein-RNA interactions are involved in many biological processes and regulate many cellular functions. Moreover, they are related to many human diseases. To understand the molecular mechanism of protein-DNA binding and protein-RNA b...

Predicting circRNA-RBP Binding Sites Using a Hybrid Deep Neural Network.

Interdisciplinary sciences, computational life sciences
Circular RNAs (circRNAs) are non-coding RNAs generated by reverse splicing. They are involved in biological process and human diseases by interacting with specific RNA-binding proteins (RBPs). Due to traditional biological experiments being costly, c...

Geometric deep learning for the prediction of magnesium-binding sites in RNA structures.

International journal of biological macromolecules
Magnesium ions (Mg) are essential for the folding, functional expression, and structural stability of RNA molecules. However, predicting Mg-binding sites in RNA molecules based solely on RNA structures is still challenging. The molecular surface, cha...