Ethanol production is a significant industrial bioprocess for energy. The primary objective of this study is to control the process reactor temperature to get the desired product, that is, ethanol. Advanced model-based control systems face challenges...
The application of artificial neural networks (ANNs) in the treatment of wastewater has achieved increasing attention, as it enhances the efficiency and sustainability of wastewater treatment plants (WWTPs). This paper explores the application of ANN...
In this study, four machine learning (ML) prediction models were developed to predict and optimize the production performance of caproic acid based on substrates, products, and process parameters. The XGBoost outperformed others, with a high R of 0.9...
Bound extracellular polymeric substances (EPS) are complex, high-molecular-weight polymer mixtures that play a critical role in pore clogging, foulants adhesion, and fouling layer formation during membrane filtration, owing to their adhesive properti...
A parallel hybrid ordinary differential equation (ODE) integrating the Activated Sludge Model No. 2d (ASM2d) and an artificial neural network (ANN) was developed to simulate biological phosphorus removal (BPR) with high accuracy and interpretability....
To address the limitations inherent in both sulfur autotrophic denitrification (SAD) and heterotrophic denitrification (HD) processes, this study introduces a novel approach. Three carbon sources (glucose, methanol, and sodium acetate) were fed into ...
We present a new modeling approach for the study and prediction of important process outcomes of biotechnological cultivation processes under the influence of process parameter variations. Our model is based on physics-informed neural networks (PINNs...
Biogas yield in anaerobic digestion (AD) involves continuous and complex biological reactions. The traditional linear models failed to quantitatively assess the interactive effects of these factors on AD performance. To further explore the internal r...
Based on operational data collected over 1.5 years from four full-scale dry anaerobic digesters used for kitchen food waste treatment, this study adopted eight typical machine learning algorithms to distinguish the best biogas prediction model and to...
Microalgal-bacteria biofilm shows great potential in low-cost greywater treatment. Accurately predicting treated greywater quality is of great significance for water reuse. In this work, machine learning models were developed for simulating and predi...