AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Brain-Computer Interfaces

Showing 141 to 150 of 619 articles

Clear Filters

An Explainable and Generalizable Recurrent Neural Network Approach for Differentiating Human Brain States on EEG Dataset.

IEEE transactions on neural networks and learning systems
Electroencephalogram (EEG) is one of the most widely used brain computer interface (BCI) approaches. Despite the success of existing EEG approaches in brain state recognition studies, it is still challenging to differentiate brain states via explaina...

GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals.

IEEE transactions on neural networks and learning systems
Toward the development of effective and efficient brain-computer interface (BCI) systems, precise decoding of brain activity measured by an electroencephalogram (EEG) is highly demanded. Traditional works classify EEG signals without considering the ...

CT-Net: an interpretable CNN-Transformer fusion network for fNIRS classification.

Medical & biological engineering & computing
Functional near-infrared spectroscopy (fNIRS), an optical neuroimaging technique, has been widely used in the field of brain activity recognition and brain-computer interface. Existing works have proposed deep learning-based algorithms for the fNIRS ...

Efficient in Vivo Neural Signal Compression Using an Autoencoder-Based Neural Network.

IEEE transactions on biomedical circuits and systems
Conventional in vivo neural signal processing involves extracting spiking activity within the recorded signals from an ensemble of neurons and transmitting only spike counts over an adequate interval. However, for brain-computer interface (BCI) appli...

A novel feature extraction method PSS-CSP for binary motor imagery - based brain-computer interfaces.

Computers in biology and medicine
In order to improve the performance of binary motor imagery (MI) - based brain-computer interfaces (BCIs) using electroencephalography (EEG), a novel method (PSS-CSP) is proposed, which combines spectral subtraction with common spatial pattern. Spect...

Formulation of Common Spatial Patterns for Multi-Task Hyperscanning BCI.

IEEE transactions on bio-medical engineering
This work proposes a new formulation for common spatial patterns (CSP), often used as a powerful feature extraction technique in brain-computer interfacing (BCI) and other neurological studies. In this approach, applied to multiple subjects' data and...

Self-supervised motor imagery EEG recognition model based on 1-D MTCNN-LSTM network.

Journal of neural engineering
Aiming for the research on the brain-computer interface (BCI), it is crucial to design a MI-EEG recognition model, possessing a high classification accuracy and strong generalization ability, and not relying on a large number of labeled training samp...

Optimal Channel Selection of Multiclass Motor Imagery Classification Based on Fusion Convolutional Neural Network with Attention Blocks.

Sensors (Basel, Switzerland)
The widely adopted paradigm in brain-computer interfaces (BCIs) involves motor imagery (MI), enabling improved communication between humans and machines. EEG signals derived from MI present several challenges due to their inherent characteristics, wh...

Enhancing Classification Accuracy with Integrated Contextual Gate Network: Deep Learning Approach for Functional Near-Infrared Spectroscopy Brain-Computer Interface Application.

Sensors (Basel, Switzerland)
Brain-computer interface (BCI) systems include signal acquisition, preprocessing, feature extraction, classification, and an application phase. In fNIRS-BCI systems, deep learning (DL) algorithms play a crucial role in enhancing accuracy. Unlike trad...

Multiclass motor imagery classification with Riemannian geometry and temporal-spectral selection.

Medical & biological engineering & computing
Motor imagery (MI) based brain-computer interfaces (BCIs) decode the users' intentions from electroencephalography (EEG) to achieve information control and interaction between the brain and external devices. In this paper, firstly, we apply Riemannia...