AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Built Environment

Showing 1 to 10 of 30 articles

Clear Filters

Leveraging Generative AI Models in Urban Science.

Current topics in behavioral neurosciences
Since the late 2000s, cities have emerged as the primary human habitat across the globe, and this trend is anticipated to continue strengthening in the coming decades. As we increasingly inhabit human-designed urban spaces, it becomes crucial to unde...

A spatiotemporal deep learning approach for pedestrian crash risk prediction based on POI trip characteristics and pedestrian exposure intensity.

Accident; analysis and prevention
Pedestrians represent a population of vulnerable road users who are directly exposed to complex traffic conditions, thereby increasing their risk of injury or fatality. This study first constructed a multidimensional indicator to quantify pedestrian ...

Artificial intelligence-based assessment of built environment from Google Street View and coronary artery disease prevalence.

European heart journal
BACKGROUND AND AIMS: Built environment plays an important role in the development of cardiovascular disease. Tools to evaluate the built environment using machine vision and informatic approaches have been limited. This study aimed to investigate the...

Deep Learning-Based Assessment of Built Environment From Satellite Images and Cardiometabolic Disease Prevalence.

JAMA cardiology
IMPORTANCE: Built environment plays an important role in development of cardiovascular disease. Large scale, pragmatic evaluation of built environment has been limited owing to scarce data and inconsistent data quality.

Investigating the influence of streetscape environmental characteristics on pedestrian crashes at intersections using street view images and explainable machine learning.

Accident; analysis and prevention
Examining the relationship between streetscape features and road traffic accidents is pivotal for enhancing roadway safety. While previous studies have primarily focused on the influence of street design characteristics, sociodemographic features, an...

Considering multi-scale built environment in modeling severity of traffic violations by elderly drivers: An interpretable machine learning framework.

Accident; analysis and prevention
The causes of traffic violations by elderly drivers are different from those of other age groups. To reduce serious traffic violations that are more likely to cause serious traffic crashes, this study divided the severity of traffic violations into t...

Investigating streetscape environmental characteristics associated with road traffic crashes using street view imagery and computer vision.

Accident; analysis and prevention
Examining the relationship between streetscape features and road traffic crashes is vital for enhancing roadway safety. Traditional field surveys are often inefficient and lack comprehensive spatial coverage. Leveraging street view images (SVIs) and ...

Social media interaction and built environment effects on urban walking experience: A machine learning analysis of Shanghai Citywalk.

PloS one
In fast-paced urban environments, Citywalk has emerged as a key leisure activity for urban residents to alleviate stress and enhance emotional well-being. From the perspective of virtual-physical interaction, this study integrates social media data w...

What factors influence the willingness and intensity of regular mobile physical activity?- A machine learning analysis based on a sample of 290 cities in China.

Frontiers in public health
INTRODUCTION: This study, based on Volunteered Geographic Information (VGI) and multi-source data, aims to construct an interpretable macro-scale analytical framework to explore the factors influencing urban physical activities. Using 290 prefecture-...

Spatial heterogeneity effect of built environment on traffic safety using geographically weighted atrous convolutions neural network.

Accident; analysis and prevention
The built environment exerts a significant influence on the frequency and severity of traffic accidents. Spatially uniform assumptions on the impacts of built environment factors commonly employed in existing research may lead to inconsistent and con...