AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Catalytic Domain

Showing 11 to 20 of 38 articles

Clear Filters

Evolutionary insights into the active-site structures of the metallo-β-lactamase superfamily from a classification study with support vector machine.

Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
The metallo-β-lactamase (MβL) superfamily, which is intriguing due to its enzyme promiscuity, is a good model enzyme superfamily for studies of catalytic function evolution. Our previous study traced the evolution of the phosphotriesterase activity o...

Profiling SARS-CoV-2 Main Protease (M) Binding to Repurposed Drugs Using Molecular Dynamics Simulations in Classical and Neural Network-Trained Force Fields.

ACS combinatorial science
The current COVID-19 pandemic caused by a novel coronavirus SARS-CoV-2 urgently calls for a working therapeutic. Here, we report a computation-based workflow for efficiently selecting a subset of FDA-approved drugs that can potentially bind to the SA...

Machine learning-based prediction of enzyme substrate scope: Application to bacterial nitrilases.

Proteins
Predicting the range of substrates accepted by an enzyme from its amino acid sequence is challenging. Although sequence- and structure-based annotation approaches are often accurate for predicting broad categories of substrate specificity, they gener...

Accelerating Drug Design against Novel Proteins Using Deep Learning.

Journal of chemical information and modeling
In the world plagued by the emergence of new diseases, it is essential that we accelerate the drug design process to develop new therapeutics against them. In recent years, deep learning-based methods have shown some success in ligand-based drug desi...

Machine learning differentiates enzymatic and non-enzymatic metals in proteins.

Nature communications
Metalloenzymes are 40% of all enzymes and can perform all seven classes of enzyme reactions. Because of the physicochemical similarities between the active sites of metalloenzymes and inactive metal binding sites, it is challenging to differentiate b...

Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases.

The Journal of biological chemistry
Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible li...

De novo design of luciferases using deep learning.

Nature
De novo enzyme design has sought to introduce active sites and substrate-binding pockets that are predicted to catalyse a reaction of interest into geometrically compatible native scaffolds, but has been limited by a lack of suitable protein structur...

Research and Evaluation of the Allosteric Protein-Specific Force Field Based on a Pre-Training Deep Learning Model.

Journal of chemical information and modeling
Allosteric modulators are important regulation elements that bind the allosteric site beyond the active site, leading to the changes in dynamic and/or thermodynamic properties of the protein. Allosteric modulators have been a considerable interest as...

A Highly Sensitive Model Based on Graph Neural Networks for Enzyme Key Catalytic Residue Prediction.

Journal of chemical information and modeling
Determining the catalytic site of enzymes is a great help for understanding the relationship between protein sequence, structure, and function, which provides the basis and targets for designing, modifying, and enhancing enzyme activity. The unique l...