AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Chromatin Immunoprecipitation Sequencing

Showing 31 to 35 of 35 articles

Clear Filters

Probe Efficient Feature Representation of Gapped K-mer Frequency Vectors from Sequences Using Deep Neural Networks.

IEEE/ACM transactions on computational biology and bioinformatics
Gapped k-mers frequency vectors (gkm-fv) has been presented for extracting sequence features. Coupled with support vector machine (gkm-SVM), gkm-fvs have been used to achieve effective sequence-based predictions. However, the huge computation of a la...

Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures.

Molecular metabolism
OBJECTIVE: Type 2 diabetes (T2D) is a complex disease characterized by pancreatic islet dysfunction, insulin resistance, and disruption of blood glucose levels. Genome-wide association studies (GWAS) have identified > 400 independent signals that enc...

CNN-Peaks: ChIP-Seq peak detection pipeline using convolutional neural networks that imitate human visual inspection.

Scientific reports
ChIP-seq is one of the core experimental resources available to understand genome-wide epigenetic interactions and identify the functional elements associated with diseases. The analysis of ChIP-seq data is important but poses a difficult computation...

Machine learning uncovers cell identity regulator by histone code.

Nature communications
Conversion between cell types, e.g., by induced expression of master transcription factors, holds great promise for cellular therapy. Our ability to manipulate cell identity is constrained by incomplete information on cell identity genes (CIGs) and t...

An Integrative Framework for Combining Sequence and Epigenomic Data to Predict Transcription Factor Binding Sites Using Deep Learning.

IEEE/ACM transactions on computational biology and bioinformatics
Knowing the transcription factor binding sites (TFBSs) is essential for modeling the underlying binding mechanisms and follow-up cellular functions. Convolutional neural networks (CNNs) have outperformed methods in predicting TFBSs from the primary D...