AIMC Topic: Crystallography, X-Ray

Clear Filters Showing 21 to 30 of 66 articles

De novo protein design by deep network hallucination.

Nature
There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences. Here we investigate whether the information captured by such networks is sufficiently...

MANORAA: A machine learning platform to guide protein-ligand design by anchors and influential distances.

Structure (London, England : 1993)
The MANORAA platform uses structure-based approaches to provide information on drug design originally derived from mapping tens of thousands of amino acids on a grid. In-depth analyses of the pockets, frequently occurring atoms, influential distances...

Machine learning-based real-time object locator/evaluator for cryo-EM data collection.

Communications biology
In cryo-electron microscopy (cryo-EM) data collection, locating a target object is error-prone. Here, we present a machine learning-based approach with a real-time object locator named yoneoLocr using YOLO, a well-known object detection system. Imple...

Robotic sample changers for macromolecular X-ray crystallography and biological small-angle X-ray scattering at the National Synchrotron Light Source II.

Journal of synchrotron radiation
Here we present two robotic sample changers integrated into the experimental stations for the macromolecular crystallography (MX) beamlines AMX and FMX, and the biological small-angle scattering (bioSAXS) beamline LiX. They enable fully automated una...

Accurate prediction of protein structures and interactions using a three-track neural network.

Science (New York, N.Y.)
DeepMind presented notably accurate predictions at the recent 14th Critical Assessment of Structure Prediction (CASP14) conference. We explored network architectures that incorporate related ideas and obtained the best performance with a three-track ...

Recapitulating the Binding Affinity of Nrf2 for KEAP1 in a Cyclic Heptapeptide, Guided by NMR, X-ray Crystallography, and Machine Learning.

Journal of the American Chemical Society
Macrocycles, including macrocyclic peptides, have shown promise for targeting challenging protein-protein interactions (PPIs). One PPI of high interest is between Kelch-like ECH-Associated Protein-1 (KEAP1) and Nuclear Factor (Erythroid-derived 2)-li...

TopSuite Web Server: A Meta-Suite for Deep-Learning-Based Protein Structure and Quality Prediction.

Journal of chemical information and modeling
Proteins carry out the most fundamental processes of life such as cellular metabolism, regulation, and communication. Understanding these processes at a molecular level requires knowledge of their three-dimensional structures. Experimental techniques...

Predicting protein model correctness in Coot using machine learning.

Acta crystallographica. Section D, Structural biology
Manually identifying and correcting errors in protein models can be a slow process, but improvements in validation tools and automated model-building software can contribute to reducing this burden. This article presents a new correctness score that ...

Need for Cross-Validation of Single Particle Cryo-EM.

Journal of chemical information and modeling
Cross-validation is used to determine the validity of a model on unseen data by assessing if the model is overfitted to noise. It is widely used in many fields, from artificial intelligence to structural biology in X-ray crystallography and nuclear m...

Integrated structural modeling and super-resolution imaging resolve GPCR oligomers.

Progress in molecular biology and translational science
Formation of G protein-coupled receptors (GPCRs) dimers and higher order oligomers represents a key mechanism in pleiotropic signaling, yet how individual protomers function within oligomers remains poorly understood. For the Class A/rhodopsin subfam...