AIMC Topic: Databases, Protein

Clear Filters Showing 21 to 30 of 713 articles

MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

Acta pharmacologica Sinica
Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantial...

DisDock: A Deep Learning Method for Metal Ion-Protein Redocking.

Proteins
The structures of metalloproteins are essential for comprehending their functions and interactions. The breakthrough of AlphaFold has made it possible to predict protein structures with experimental accuracy. However, the type of metal ion that a met...

PPILS: Protein-protein interaction prediction with language of biological coding.

Computers in biology and medicine
Protein-protein interactions within a cell are essential for various fundamental biological processes. Computational techniques have arisen in bioinformatics due to the challenging and resource-intensive nature of experimental protein pair interactio...

Supervised learning approaches for predicting Ebola-Human Protein-Protein interactions.

Gene
The goal of this research work is to predict protein-protein interactions (PPIs) between the Ebola virus and the host who is at risk of infection. Since there are very limited databases available on the Ebola virus; we have prepared a comprehensive d...

Integrating CNN and Bi-LSTM for protein succinylation sites prediction based on Natural Language Processing technique.

Computers in biology and medicine
Protein succinylation, a post-translational modification wherein a succinyl group (-CO-CH₂-CH₂-CO-) attaches to lysine residues, plays a critical regulatory role in cellular processes. Dysregulated succinylation has been implicated in the onset and p...

Identifying Protein-Nucleotide Binding Residues via Grouped Multi-task Learning and Pre-trained Protein Language Models.

Journal of chemical information and modeling
The accurate identification of protein-nucleotide binding residues is crucial for protein function annotation and drug discovery. Numerous computational methods have been proposed to predict these binding residues, achieving remarkable performance. H...

CovCysPredictor: Predicting Selective Covalently Modifiable Cysteines Using Protein Structure and Interpretable Machine Learning.

Journal of chemical information and modeling
Targeted covalent inhibition is a powerful therapeutic modality in the drug discoverer's toolbox. Recent advances in covalent drug discovery, in particular, targeting cysteines, have led to significant breakthroughs for traditionally challenging targ...

Deep Learning Approaches for the Prediction of Protein Functional Sites.

Molecules (Basel, Switzerland)
Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty...

π-PrimeNovo: an accurate and efficient non-autoregressive deep learning model for de novo peptide sequencing.

Nature communications
Peptide sequencing via tandem mass spectrometry (MS/MS) is essential in proteomics. Unlike traditional database searches, deep learning excels at de novo peptide sequencing, even for peptides missing from existing databases. Current deep learning mod...

DPFunc: accurately predicting protein function via deep learning with domain-guided structure information.

Nature communications
Computational methods for predicting protein function are of great significance in understanding biological mechanisms and treating complex diseases. However, existing computational approaches of protein function prediction lack interpretability, mak...