AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Databases, Protein

Showing 21 to 30 of 697 articles

Clear Filters

KaMLs for Predicting Protein p Values and Ionization States: Are Trees All You Need?

Journal of chemical theory and computation
Despite its importance in understanding biology and computer-aided drug discovery, the accurate prediction of protein ionization states remains a formidable challenge. Physics-based approaches struggle to capture the small, competing contributions in...

MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

Acta pharmacologica Sinica
Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantial...

Deep Learning Approaches for the Prediction of Protein Functional Sites.

Molecules (Basel, Switzerland)
Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty...

DisDock: A Deep Learning Method for Metal Ion-Protein Redocking.

Proteins
The structures of metalloproteins are essential for comprehending their functions and interactions. The breakthrough of AlphaFold has made it possible to predict protein structures with experimental accuracy. However, the type of metal ion that a met...

PPILS: Protein-protein interaction prediction with language of biological coding.

Computers in biology and medicine
Protein-protein interactions within a cell are essential for various fundamental biological processes. Computational techniques have arisen in bioinformatics due to the challenging and resource-intensive nature of experimental protein pair interactio...

Supervised learning approaches for predicting Ebola-Human Protein-Protein interactions.

Gene
The goal of this research work is to predict protein-protein interactions (PPIs) between the Ebola virus and the host who is at risk of infection. Since there are very limited databases available on the Ebola virus; we have prepared a comprehensive d...

A Deep Learning and PSSM Profile Approach for Accurate SNARE Protein Prediction.

Methods in molecular biology (Clifton, N.J.)
SNARE proteins play a pivotal role in membrane fusion and various cellular processes. Accurate identification of SNARE proteins is crucial for elucidating their functions in both health and disease contexts. This chapter presents a novel approach emp...

DOGpred: A Novel Deep Learning Framework for Accurate Identification of Human O-linked Threonine Glycosylation Sites.

Journal of molecular biology
O-linked glycosylation is a crucial post-translational modification that regulates protein function and biological processes. Dysregulation of this process is associated with various diseases, underscoring the need to accurately identify O-linked gly...

MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network.

Bioinformatics (Oxford, England)
MOTIVATION: The increasing accessibility of large-scale protein sequences through advanced sequencing technologies has necessitated the development of efficient and accurate methods for predicting protein function. Computational prediction models hav...

AFFIPred: AlphaFold2 structure-based Functional Impact Prediction of missense variations.

Protein science : a publication of the Protein Society
Protein structure holds immense potential for pathogenicity prediction, albeit structure-based predictors are limited compared to the sequence-based counterparts due to the "structure knowledge gap" between large number of available protein sequences...