AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Graph Neural Networks

Showing 81 to 90 of 99 articles

Clear Filters

Spatially Informed Graph Structure Learning Extracts Insights from Spatial Transcriptomics.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Embeddings derived from cell graphs hold significant potential for exploring spatial transcriptomics (ST) datasets. Nevertheless, existing methodologies rely on a graph structure defined by spatial proximity, which inadequately represents the diversi...

Graph neural networks in multi-stained pathological imaging: extended comparative analysis of Radiomic features.

International journal of computer assisted radiology and surgery
PURPOSE: This study investigates the application of Radiomic features within graph neural networks (GNNs) for the classification of multiple-epitope-ligand cartography (MELC) pathology samples. It aims to enhance the diagnosis of often misdiagnosed s...

H2GnnDTI: hierarchical heterogeneous graph neural networks for drug-target interaction prediction.

Bioinformatics (Oxford, England)
MOTIVATION: Identifying drug-target interactions (DTIs) is a crucial step in drug repurposing and drug discovery. The significant increase in demand and the expensive nature for experimentally identifying DTIs necessitate computational tools for auto...

DEKP: a deep learning model for enzyme kinetic parameter prediction based on pretrained models and graph neural networks.

Briefings in bioinformatics
The prediction of enzyme kinetic parameters is crucial for screening enzymes with high catalytic efficiency and desired characteristics to catalyze natural or non-natural reactions. Data-driven machine learning models have been explored to reduce exp...

A graph neural network approach for accurate prediction of pathogenicity in multi-type variants.

Briefings in bioinformatics
Accurate prediction of pathogenic variants in human disease-associated genes would have a profound effect on clinical decision-making; however, it remains a significant challenge due to the overwhelming number of these variants. We propose graph neur...

Interpretable high-order knowledge graph neural network for predicting synthetic lethality in human cancers.

Briefings in bioinformatics
Synthetic lethality (SL) is a promising gene interaction for cancer therapy. Recent SL prediction methods integrate knowledge graphs (KGs) into graph neural networks (GNNs) and employ attention mechanisms to extract local subgraphs as explanations fo...

Graph neural networks for single-cell omics data: a review of approaches and applications.

Briefings in bioinformatics
Rapid advancement of sequencing technologies now allows for the utilization of precise signals at single-cell resolution in various omics studies. However, the massive volume, ultra-high dimensionality, and high sparsity nature of single-cell data ha...

Cox-Sage: enhancing Cox proportional hazards model with interpretable graph neural networks for cancer prognosis.

Briefings in bioinformatics
High-throughput sequencing technologies have facilitated a deeper exploration of prognostic biomarkers. While many deep learning (DL) methods primarily focus on feature extraction or employ simplistic fully connected layers within prognostic modules,...

A comprehensive graph neural network method for predicting triplet motifs in disease-drug-gene interactions.

Bioinformatics (Oxford, England)
MOTIVATION: The drug-disease, gene-disease, and drug-gene relationships, as high-frequency edge types, describe complex biological processes within the biomedical knowledge graph. The structural patterns formed by these three edges are the graph moti...

mGNN-bw: Multi-Scale Graph Neural Network Based on Biased Random Walk Path Aggregation for ASD Diagnosis.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
In recent years, computationally assisted diagnosis for classifying autism spectrum disorder (ASD) and typically developing (TD) individuals based on neuroimaging data, such as functional magnetic resonance imaging (fMRI), has garnered significant at...