AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Heart Rate

Showing 181 to 190 of 543 articles

Clear Filters

Use of Deep Learning to Detect the Maternal Heart Rate and False Signals on Fetal Heart Rate Recordings.

Biosensors
We have developed deep learning models for automatic identification of the maternal heart rate (MHR) and, more generally, false signals (FSs) on fetal heart rate (FHR) recordings. The models can be used to preprocess FHR data prior to automated analy...

A review of arrhythmia detection based on electrocardiogram with artificial intelligence.

Expert review of medical devices
INTRODUCTION: With the widespread availability of portable electrocardiogram (ECG) devices, there will be a surge in ECG diagnoses. Traditional computer-aided diagnosis of arrhythmia mainly relies on the rules of medical knowledge, which are insuffic...

Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms.

Computational intelligence and neuroscience
Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data an...

Heartbeat Classification and Arrhythmia Detection Using a Multi-Model Deep-Learning Technique.

Sensors (Basel, Switzerland)
Cardiac arrhythmias pose a significant danger to human life; therefore, it is of utmost importance to be able to efficiently diagnose these arrhythmias promptly. There exist many techniques for the detection of arrhythmias; however, the most widely a...

A deep learning approach to estimate pulse rate by remote photoplethysmography.

Physiological measurement
This study proposes a U-net shaped Deep Neural Network (DNN) model to extract remote photoplethysmography (rPPG) signals from skin color signals to estimate Pulse Rate (PR).Three input window sizes are used in the DNN: 256 samples (5.12 s), 512 sampl...

Photoplethysmogram based vascular aging assessment using the deep convolutional neural network.

Scientific reports
Arterial stiffness due to vascular aging is a major indicator during the assessment of cardiovascular risk. In this study, we propose a method for age estimation by applying deep learning to a photoplethysmogram (PPG) for the non-invasive assessment ...

A Modified Deep Learning Framework for Arrhythmia Disease Analysis in Medical Imaging Using Electrocardiogram Signal.

BioMed research international
Arrhythmias are anomalies in the heartbeat rhythm that occur occasionally in people's lives. These arrhythmias can lead to potentially deadly consequences, putting your life in jeopardy. As a result, arrhythmia identification and classification are a...

Frailty Identification Using Heart Rate Dynamics: A Deep Learning Approach.

IEEE journal of biomedical and health informatics
Previous research showed that frailty can influence autonomic nervous system and consequently heart rate response to physical activities, which can ultimately influence the homeostatic state among older adults. While most studies have focused on rest...

XGBoost Regression of the Most Significant Photoplethysmogram Features for Assessing Vascular Aging.

IEEE journal of biomedical and health informatics
The purpose of this study was to confirm the potential of XGBoost as a vascular aging assessment model based on the photoplethysmogram (PPG) features suggested in previous studies, and to explore the key PPG features for vascular aging assessment thr...

Electrocardiogram analysis of post-stroke elderly people using one-dimensional convolutional neural network model with gradient-weighted class activation mapping.

Artificial intelligence in medicine
Stroke is the second leading cause of death globally after ischemic heart disease, also a risk factor of cardioembolic stroke. Thus, we postulate that heartbeats encapsulate vital signals related to stroke. With the rapid advancement of deep neural n...