AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Likelihood Functions

Showing 71 to 80 of 86 articles

Clear Filters

Guidelines and Best Practices for the Use of Targeted Maximum Likelihood and Machine Learning When Estimating Causal Effects of Exposures on Time-To-Event Outcomes.

Statistics in medicine
Targeted maximum likelihood estimation (TMLE) is an increasingly popular framework for the estimation of causal effects. It requires modeling both the exposure and outcome but is doubly robust in the sense that it is valid if at least one of these mo...

An efficient deep learning method for amino acid substitution model selection.

Journal of evolutionary biology
Amino acid substitution models play an important role in studying the evolutionary relationships among species from protein sequences. The amino acid substitution model consists of a large number of parameters; therefore, it is estimated from hundred...

A machine-learning-based alternative to phylogenetic bootstrap.

Bioinformatics (Oxford, England)
MOTIVATION: Currently used methods for estimating branch support in phylogenetic analyses often rely on the classic Felsenstein's bootstrap, parametric tests, or their approximations. As these branch support scores are widely used in phylogenetic ana...

Deep Learning and Likelihood Approaches for Viral Phylogeography Converge on the Same Answers Whether the Inference Model Is Right or Wrong.

Systematic biology
Analysis of phylogenetic trees has become an essential tool in epidemiology. Likelihood-based methods fit models to phylogenies to draw inferences about the phylodynamics and history of viral transmission. However, these methods are often computation...

Deep Learning from Phylogenies for Diversification Analyses.

Systematic biology
Birth-death (BD) models are widely used in combination with species phylogenies to study past diversification dynamics. Current inference approaches typically rely on likelihood-based methods. These methods are not generalizable, as a new likelihood ...

Fusang: a framework for phylogenetic tree inference via deep learning.

Nucleic acids research
Phylogenetic tree inference is a classic fundamental task in evolutionary biology that entails inferring the evolutionary relationship of targets based on multiple sequence alignment (MSA). Maximum likelihood (ML) and Bayesian inference (BI) methods ...

Automatic Differentiation is no Panacea for Phylogenetic Gradient Computation.

Genome biology and evolution
Gradients of probabilistic model likelihoods with respect to their parameters are essential for modern computational statistics and machine learning. These calculations are readily available for arbitrary models via "automatic differentiation" implem...

Data-Driven Identification of Clinical Real-World Expressions Linked to ICD.

Studies in health technology and informatics
A semi-structured clinical problem list containing ∼1.9 million de-identified entries linked to ICD-10 codes was used to identify closely related real-world expressions. A log-likelihood based co-occurrence analysis generated seed-terms, which were i...

CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database.

Nucleic acids research
The Comprehensive Antibiotic Resistance Database (CARD; card.mcmaster.ca) combines the Antibiotic Resistance Ontology (ARO) with curated AMR gene (ARG) sequences and resistance-conferring mutations to provide an informatics framework for annotation a...

A LASSO-based approach to sample sites for phylogenetic tree search.

Bioinformatics (Oxford, England)
MOTIVATION: In recent years, full-genome sequences have become increasingly available and as a result many modern phylogenetic analyses are based on very long sequences, often with over 100 000 sites. Phylogenetic reconstructions of large-scale align...