Early breast cancer screening through mammography produces every year millions of images worldwide. Despite the volume of the data generated, these images are not systematically associated with standardized labels. Current protocols encourage giving ...
Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ul...
OBJECTIVES: To investigate the value of an artificial intelligence (AI) system in assisting radiologists to improve the assessment accuracy of BI-RADS 0 cases in mammograms.
The objective of the study was to determine if the pathology depicted on a mammogram is either benign or malignant (ductal or non-ductal carcinoma) using deep learning and artificial intelligence techniques. A total of 559 patients underwent breast u...
Background The ability of deep learning (DL) models to classify women as at risk for either screening mammography-detected or interval cancer (not detected at mammography) has not yet been explored in the literature. Purpose To examine the ability of...
PURPOSE: Measurements of breast arterial calcifications (BAC) can offer a personalized, non-invasive approach to risk-stratify women for cardiovascular diseases such as heart attack and stroke. We aim to detect and segment breast arterial calcificati...