BACKGROUND: The coronavirus disease 2019 (COVID-19) and community-acquired pneumonia (CAP) present a high degree of similarity in chest computed tomography (CT) images. Therefore, a procedure for accurately and automatically distinguishing between th...
AIM: To develop and validate a nomogram model that combines computed tomography (CT)-based radiological factors extracted from deep-learning and clinical factors for the early predictions of immune checkpoint inhibitor-related pneumonitis (ICI-P).
The coronavirus is caused by the infection of the SARS-CoV-2 virus: it represents a complex and new condition, considering that until the end of December 2019 this virus was totally unknown to the international scientific community. The clinical mana...
This paper proposes a new deep learning (DL) framework for the analysis of lung diseases, including COVID-19 and pneumonia, from chest CT scans and X-ray (CXR) images. This framework is termed optimized DenseNet201 for lung diseases (LDDNet). The pro...
OBJECTIVES: Differentiation between COVID-19 and community-acquired pneumonia (CAP) in computed tomography (CT) is a task that can be performed by human radiologists and artificial intelligence (AI). The present study aims to (1) develop an AI algori...
Supervised deep learning techniques have been very popular in medical imaging for various tasks of classification, segmentation, and object detection. However, they require a large number of labelled data which is expensive and requires many hours of...
BACKGROUND AND AIMS: Chest X-ray (CXR) is indispensable to the assessment of severity, diagnosis, and management of pneumonia. Deep learning is an artificial intelligence (AI) technology that has been applied to the interpretation of medical images. ...
Covid-19 has been a global concern since 2019, crippling the world economy and health. Biological diagnostic tools have since been developed to identify the virus from bodily fluids and since the virus causes pneumonia, which results in lung inflamma...
BACKGROUND: Currently, the diagnosis of invasive pulmonary aspergillosis (IPA) mainly depends on the integration of clinical, radiological and microbiological data. Artificial intelligence (AI) has shown great advantages in dealing with data-rich bio...
Recent advances in deep learning led to several algorithms for the accurate diagnosis of pneumonia from chest X-rays. However, these models require large training medical datasets, which are sparse, isolated, and generally private. Furthermore, these...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.