AIMC Topic: Immune Checkpoint Inhibitors

Clear Filters Showing 1 to 10 of 98 articles

Development and validation of interpretable machine learning models for predicting AKI risk in patients treated with PD-1/PD-L1: a retrospective study.

BMC medical informatics and decision making
BACKGROUND: Anti-programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immunotherapy has revolutionized cancer treatment. However, it can cause immune-related adverse events, including acute kidney injury (AKI). Such adverse e...

Machine-learning driven strategies for adapting immunotherapy in metastatic NSCLC.

Nature communications
Immune checkpoint inhibitors (ICIs), either as monotherapy (ICI-Mono) or combined with chemotherapy (ICI-Chemo), improves survival in advanced non-small cell lung cancer (NSCLC). However, prospective guidance for choosing between these options remain...

Integrative habitat analysis and multi-instance deep learning for predictive model of PD-1/PD-L1 immunotherapy efficacy in NSCLC patients: a dual-center retrospective study.

BMC medical imaging
BACKGROUND: PD-1/PD-L1 immunotherapy represents the primary treatment for advanced NSCLC patients; however, response rates to this therapy vary among individuals. This dual-center study aimed to integrate habitat radiomics and multi-instance deep lea...

Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis.

Scientific reports
This study developed an immune-related long non-coding RNAs (lncRNAs)-based prognostic signature by integrating multi-omics data and machine learning algorithms to predict survival and therapeutic responses in breast cancer patients. Utilizing transc...

Predictive value of machine learning for radiation pneumonitis and checkpoint inhibitor pneumonitis in lung cancer patients: a systematic review and meta-analysis.

Scientific reports
Some studies have developed machine learning (ML) models for the prediction of pneumonitis following immunotherapy and radiotherapy for patients with lung cancer (LC). However, the prediction accuracy of these models remains a topic of debate. Thus, ...

Histopathologic deep learning model for predicting tumor response to hepatic arterial infusion chemotherapy plus TKIs and ICIs in large hepatocellular carcinoma.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: While triplet therapy (HTI), which combines hepatic arterial infusion chemotherapy (HAIC) with tyrosine kinase inhibitors and immune checkpoint inhibitors, is widely used in the treatment of large hepatocellular carcinoma (HCC), there are...

Development and validation of the Immune Profile Score (IPS), a novel multiomic algorithmic assay for stratifying outcomes in a real-world cohort of patients with advanced solid cancer treated with immune checkpoint inhibitors.

Journal for immunotherapy of cancer
BACKGROUND: Immune checkpoint inhibitors (ICIs) have transformed the oncology treatment landscape. Despite substantial improvements for some patients, the majority do not benefit from ICIs, indicating a need for predictive biomarkers to better inform...

Development and validation of a nomogram for differentiating immune checkpoint inhibitor-related pneumonitis from pneumonia in patients undergoing immunochemotherapy: a multicenter, real-world, retrospective study.

Frontiers in immunology
BACKGROUND: Immune Checkpoint Inhibitor-related Pneumonitis (CIP) exhibits high morbidity and mortality rates in the real world, often coexisting with pneumonia, particularly after immunochemotherapy. We aimed to develop and validate a non-invasive n...

A deep learning-based clinical-radiomics model predicting the treatment response of immune checkpoint inhibitors (ICIs)-based conversion therapy in potentially convertible hepatocelluar carcinoma patients: a tumor marker prognostic study.

International journal of surgery (London, England)
BACKGROUND: The majority of patients with hepatocellular carcinoma (HCC) miss the opportunity of radical resection, making immune check-point inhibitors (ICIs)-based conversion therapy a primary option. However, challenges persist in predicting respo...

Predictive Model of Objective Response to Nivolumab Monotherapy for Advanced Renal Cell Carcinoma by Machine Learning Using Genetic and Clinical Data: The SNiP-RCC Study.

JCO clinical cancer informatics
PURPOSE: Anti-PD-1 antibodies are widely used for cancer treatment, including in advanced renal cell carcinoma (RCC). However, the therapeutic response varies among patients. This study aimed to predict tumor response to nivolumab anti-PD-1 antibody ...