AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Community-Acquired Infections

Showing 1 to 10 of 24 articles

Clear Filters

A Broad Learning System to Predict the 28-Day Mortality of Patients Hospitalized with Community-Acquired Pneumonia: A Case-Control Study.

Computational and mathematical methods in medicine
This study was to conduct a model based on the broad learning system (BLS) for predicting the 28-day mortality of patients hospitalized with community-acquired pneumonia (CAP). A total of 1,210 eligible CAP cases from Chifeng Municipal Hospital were ...

AI support for accurate and fast radiological diagnosis of COVID-19: an international multicenter, multivendor CT study.

European radiology
OBJECTIVES: Differentiation between COVID-19 and community-acquired pneumonia (CAP) in computed tomography (CT) is a task that can be performed by human radiologists and artificial intelligence (AI). The present study aims to (1) develop an AI algori...

Machine learning-based derivation and validation of three immune phenotypes for risk stratification and prognosis in community-acquired pneumonia: a retrospective cohort study.

Frontiers in immunology
BACKGROUND: The clinical presentation of Community-acquired pneumonia (CAP) in hospitalized patients exhibits heterogeneity. Inflammation and immune responses play significant roles in CAP development. However, research on immunophenotypes in CAP pat...

An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease.

Respiratory research
BACKGROUND: There is no individualized prediction model for intensive care unit (ICU) admission on patients with community-acquired pneumonia (CAP) and connective tissue disease (CTD) so far. In this study, we aimed to establish a machine learning-ba...

Cluster analysis of thoracic muscle mass using artificial intelligence in severe pneumonia.

Scientific reports
Severe pneumonia results in high morbidity and mortality despite advanced treatments. This study investigates thoracic muscle mass from chest CT scans as a biomarker for predicting clinical outcomes in ICU patients with severe pneumonia. Analyzing el...

Identifying severe community-acquired pneumonia using radiomics and clinical data: a machine learning approach.

Scientific reports
Evaluating Community-Acquired Pneumonia (CAP) is crucial for determining appropriate treatment methods. In this study, we established a machine learning model using radiomics and clinical features to rapidly and accurately identify Severe Community-A...

A Machine Learning-Based Prediction Model for Acute Kidney Injury in Patients With Community-Acquired Pneumonia: Multicenter Validation Study.

Journal of medical Internet research
BACKGROUND: Acute kidney injury (AKI) is common in patients with community-acquired pneumonia (CAP) and is associated with increased morbidity and mortality.

Prediction of mortality risk in patients with severe community-acquired pneumonia in the intensive care unit using machine learning.

Scientific reports
The aim of this study was to develop and validate a machine learning-based mortality risk prediction model for patients with severe community-acquired pneumonia (SCAP) in the intensive care unit (ICU). We collected data from two centers as the develo...

Employing a low-code machine learning approach to predict in-hospital mortality and length of stay in patients with community-acquired pneumonia.

Scientific reports
Community-acquired pneumonia (CAP) is associated with high mortality rates and often results in prolonged hospital stays. The potential of machine learning to enhance prediction accuracy in this context is significant, yet clinicians often lack the p...

Comparing large scale and selected feature learning for community acquired pneumonia prognosis prediction using clinical data: a stacked ensemble approach.

Scientific reports
This study investigated and validated all-cause in-hospital death prediction models for hospitalized pneumonia patients based on large-scale clinical data, including diagnoses, medication prescriptions, and laboratory test codes. Feature selection wa...