Heart failure (HF) is a severe cardiovascular disease often worsened by respiratory infections like influenza, COVID-19, and community-acquired pneumonia (CAP). This study aims to uncover the molecular commonalities among these respiratory diseases a...
This study investigated and validated all-cause in-hospital death prediction models for hospitalized pneumonia patients based on large-scale clinical data, including diagnoses, medication prescriptions, and laboratory test codes. Feature selection wa...
The aim of this study was to develop and validate a machine learning-based mortality risk prediction model for patients with severe community-acquired pneumonia (SCAP) in the intensive care unit (ICU). We collected data from two centers as the develo...
Community-acquired pneumonia (CAP) is associated with high mortality rates and often results in prolonged hospital stays. The potential of machine learning to enhance prediction accuracy in this context is significant, yet clinicians often lack the p...
BACKGROUND: Acute kidney injury (AKI) is common in patients with community-acquired pneumonia (CAP) and is associated with increased morbidity and mortality.
Evaluating Community-Acquired Pneumonia (CAP) is crucial for determining appropriate treatment methods. In this study, we established a machine learning model using radiomics and clinical features to rapidly and accurately identify Severe Community-A...
BACKGROUND: The clinical presentation of Community-acquired pneumonia (CAP) in hospitalized patients exhibits heterogeneity. Inflammation and immune responses play significant roles in CAP development. However, research on immunophenotypes in CAP pat...
Severe pneumonia results in high morbidity and mortality despite advanced treatments. This study investigates thoracic muscle mass from chest CT scans as a biomarker for predicting clinical outcomes in ICU patients with severe pneumonia. Analyzing el...
BACKGROUND: There is no individualized prediction model for intensive care unit (ICU) admission on patients with community-acquired pneumonia (CAP) and connective tissue disease (CTD) so far. In this study, we aimed to establish a machine learning-ba...
OBJECTIVES: Differentiation between COVID-19 and community-acquired pneumonia (CAP) in computed tomography (CT) is a task that can be performed by human radiologists and artificial intelligence (AI). The present study aims to (1) develop an AI algori...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.