AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Prenatal Care

Showing 1 to 10 of 28 articles

Clear Filters

Portable ultrasound devices for obstetric care in resource-constrained environments: mapping the landscape.

Gates open research
BACKGROUND: The WHO's recommendations on antenatal care underscore the need for ultrasound assessment during pregnancy. Given that maternal and perinatal mortality remains unacceptably high in underserved regions, these guidelines are imperative for ...

Automated approach for fetal and maternal health management using light gradient boosting model with SHAP explainable AI.

Frontiers in public health
Fetal health holds paramount importance in prenatal care and obstetrics, as it directly impacts the wellbeing of mother and fetus. Monitoring fetal health through pregnancy is crucial for identifying and addressing potential risks and complications t...

Predicting place of delivery choice among childbearing women in East Africa: a comparative analysis of advanced machine learning techniques.

Frontiers in public health
BACKGROUND: Sub-Saharan Africa faces high neonatal and maternal mortality rates due to limited access to skilled healthcare during delivery. This study aims to improve the classification of health facilities and home deliveries using advanced machine...

Healthy nutrition and weight management for a positive pregnancy experience in the antenatal period: Comparison of responses from artificial intelligence models on nutrition during pregnancy.

International journal of medical informatics
BACKGROUND: As artificial intelligence AI-supported applications become integral to web-based information-seeking, assessing their impact on healthy nutrition and weight management during the antenatal period is crucial.

Predicting preterm birth using electronic medical records from multiple prenatal visits.

BMC pregnancy and childbirth
This study aimed to predict preterm birth in nulliparous women using machine learning and easily accessible variables from prenatal visits. Elastic net regularized logistic regression models were developed and evaluated using 5-fold cross-validation ...

Leveraging machine learning models for anemia severity detection among pregnant women following ANC: Ethiopian context.

BMC public health
BACKGROUND: Anemia during pregnancy is a significant public health concern, particularly in resource-limited settings. Machine learning (ML) offers promising avenues for improved anemia detection and management. This study investigates the potential ...

Leveraging artificial intelligence for inclusive maternity care: Enhancing access for mothers with disabilities in Africa.

Women's health (London, England)
Women with disabilities face significant barriers in accessing maternal healthcare, which increases their risk of adverse pregnancy outcomes, particularly in Africa, where resources are limited. Artificial intelligence (AI) presents a unique opportun...

A survey of obstetric ultrasound uses and priorities for artificial intelligence-assisted obstetric ultrasound in low- and middle-income countries.

Scientific reports
Obstetric ultrasound (OBUS) is recommended as part of antenatal care for pregnant individuals worldwide. To better understand current uses of OBUS in low- and middle-income countries and perceptions regarding potential use of artificial intelligence ...

Causal machine learning models for predicting low birth weight in midwife-led continuity care intervention in North Shoa Zone, Ethiopia.

BMC medical informatics and decision making
BACKGROUND: Low birth weight (LBW) is a critical global health issue that affects infants disproportionately, particularly in developing countries. This study adopted causal machine learning (CML) algorithms for predicting LBW in newborns, drawing fr...

Fetal origins of adult disease: transforming prenatal care by integrating Barker's Hypothesis with AI-driven 4D ultrasound.

Journal of perinatal medicine
INTRODUCTION: The fetal origins of adult disease, widely known as Barker's Hypothesis, suggest that adverse fetal environments significantly impact the risk of developing chronic diseases, such as diabetes and cardiovascular conditions, in adulthood....