AIMC Topic: Delivery, Obstetric

Clear Filters Showing 1 to 10 of 22 articles

Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births.

BMC pregnancy and childbirth
OBJECTIVE: This study aimed to develop a machine learning (ML) model integrated with SHapley Additive exPlanations (SHAP) analysis to predict postpartum hemorrhage (PPH) following vaginal deliveries, offering a potential tool for personalized risk as...

Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre clinical study.

Scientific reports
To evaluate the clinical performance and safety of the ONIRY system for obstetric anal sphincter injuries (OASI) detection versus three-dimensional endoanal ultrasound (EAUS). A prospective, comparative, multicentre, international study. Poland, Czec...

Predicting vaginal delivery after labor induction using machine learning: Development of a multivariable prediction model.

Acta obstetricia et gynecologica Scandinavica
INTRODUCTION: Induction of labor, often used for pregnancy termination, has globally rising rates, especially in high-income countries where pregnant women present with more comorbidities. Consequently, concerns on a potential rise in cesarean sectio...

Predicting place of delivery choice among childbearing women in East Africa: a comparative analysis of advanced machine learning techniques.

Frontiers in public health
BACKGROUND: Sub-Saharan Africa faces high neonatal and maternal mortality rates due to limited access to skilled healthcare during delivery. This study aims to improve the classification of health facilities and home deliveries using advanced machine...

Quality of birth care and risk factors of length of stay after birth: A machine learning approach.

The journal of obstetrics and gynaecology research
AIM: Length of stay (LOS) is an outcome measure and is assumed to be related to quality. The objective of this study is to examine the quality of birth care and risk factors associated with LOS after birth.

A machine learning model to predict spontaneous vaginal delivery failure for term nulliparous women: An observational study.

International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics
OBJECTIVE: This study aims to construct and evaluate a model to predict spontaneous vaginal delivery (SVD) failure in term nulliparous women based on machine learning algorithms.

Prediction of post-delivery hemoglobin levels with machine learning algorithms.

Scientific reports
Predicting postpartum hemorrhage (PPH) before delivery is crucial for enhancing patient outcomes, enabling timely transfer and implementation of prophylactic therapies. We attempted to utilize machine learning (ML) using basic pre-labor clinical data...

Deep neural network (DNN) modelling for prediction of the mode of delivery.

European journal of obstetrics, gynecology, and reproductive biology
One of the factors that worry obstetricians the most is the method of delivery. In recent years, the rate of caesarean sections has steadily climbed and now exceeds the threshold advised by medical organizations. Obstetricians typically lack the tool...

An intelligent adverse delivery outcomes prediction model based on the fusion of multiple obstetric clinical data.

Computer methods in biomechanics and biomedical engineering
Adverse delivery outcomes is a major re-productive health problem that affects the physical and mental health of pregnant women. Obviously, obstetric clinical data has periodically time series characteristics. This paper proposed a three stage advers...