Interdisciplinary sciences, computational life sciences
Mar 8, 2024
Accurately predicting compound-protein interactions (CPI) is a critical task in computer-aided drug design. In recent years, the exponential growth of compound activity and biomedical data has highlighted the need for efficient and interpretable pred...
Journal of chemical information and modeling
Mar 8, 2024
Predicting the protein-nucleic acid (PNA) binding affinity solely from their sequences is of paramount importance for the experimental design and analysis of PNA interactions (PNAIs). A large number of currently developed models for binding affinity ...
Identifying binding compounds against a target protein is crucial for large-scale virtual screening in drug development. Recently, network-based methods have been developed for compound-protein interaction (CPI) prediction. However, they are difficul...
Journal of biomolecular structure & dynamics
Feb 24, 2024
Activation of NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) has been associated with multiple chronic pathologies, including diabetes, atherosclerosis, and rheumatoid arthritis. Moreover, histone deacetylases (HDACs), specifical...
We introduce a computational approach for the design of target-specific peptides. Our method integrates a Gated Recurrent Unit-based Variational Autoencoder with Rosetta FlexPepDock for peptide sequence generation and binding affinity assessment. Sub...
Journal of chemical information and modeling
Feb 17, 2024
Predicting the binding affinity of protein-ligand complexes is crucial for computer-aided drug discovery (CADD) and the identification of potential drug candidates. The deep learning-based scoring functions have emerged as promising predictors of bin...
When designing a machine learning-based scoring function, we access a limited number of protein-ligand complexes with experimentally determined binding affinity values, representing only a fraction of all possible protein-ligand complexes. Consequent...
The rank ordering of ligands remains one of the most attractive challenges in drug discovery. While physics-based in silico binding affinity methods dominate the field, they still have problems, which largely revolve around forcefield accuracy and sa...
Understanding the mechanisms of protein-DNA binding is critical in comprehending gene regulation. Three-dimensional DNA structure, also described as DNA shape, plays a key role in these mechanisms. In this study, we present a deep learning-based meth...
Phosphoinositide 3-kinase alpha (PI3Kα) is one of the most frequently dysregulated kinases known for their pivotal role in many oncogenic diseases. While the side effects linked to existing drugs against PI3Kα-induced cancers provide an avenue for fu...