AIMC Topic: Cost-Benefit Analysis

Clear Filters Showing 1 to 10 of 183 articles

Enhancing early detection and treatment of psychosis in Germany: a protocol for the health economic evaluation of an artificial intelligence-guided complex intervention.

BMJ open
INTRODUCTION: Psychosis, characterised by chronic symptoms often emerging in youth, imposes a substantial burden on individuals and healthcare systems. While early detection and intervention can mitigate this burden, there is limited evidence on the ...

Cost-effectiveness of the 3E model in diabetes management: a machine learning approach to assess long-term economic impact.

Frontiers in public health
BACKGROUND: This study investigated the cost-effectiveness and clinical impact of the 3E model (education, empowerment, and economy) in diabetes management using advanced machine learning techniques.

Improved radiological diagnosis of osteoporotic vertebral fragility fractures following UK-wide interventions and re-audit-can this be maintained and translated into clinical practice?

Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA
UNLABELLED: To determine the potential economic, morbidity and mortality impact of improvements in reporting of vertebral fragility fractures (VFFs) following a complete audit cycle. Six percent interval increase in reporting of moderate/severe VFFs ...

Cost-Effectiveness Analysis of a Machine Learning-Based eHealth System to Predict and Reduce Emergency Department Visits and Unscheduled Hospitalizations of Older People Living at Home: Retrospective Study.

JMIR formative research
BACKGROUND: Dependent older people or those losing their autonomy are at risk of emergency hospitalization. Digital systems that monitor health remotely could be useful in reducing these visits by detecting worsening health conditions earlier. Howeve...

Acceptability, applicability, and cost-utility of artificial-intelligence-powered low-cost portable fundus camera for diabetic retinopathy screening in primary health care settings.

Diabetes research and clinical practice
AIMS: To evaluate the acceptability, applicability, and cost-utility of AI-powered portable fundus cameras for diabetic retinopathy (DR) screening in Hong Kong, providing a viable alternative screening solution for resource-limited areas.

Integrative Multi-Omics and Routine Blood Analysis Using Deep Learning: Cost-Effective Early Prediction of Chronic Disease Risks.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Chronic noncommunicable diseases (NCDS) are often characterized by gradual onset and slow progression, but the difficulty in early prediction remains a substantial health challenge worldwide. This study aims to explore the interconnectedness of disea...

Establishment of a deep-learning-assisted recurrent nasopharyngeal carcinoma detecting simultaneous tactic (DARNDEST) with high cost-effectiveness based on magnetic resonance images: a multicenter study in an endemic area.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: To investigate the feasibility of detecting local recurrent nasopharyngeal carcinoma (rNPC) using unenhanced magnetic resonance images (MRI) and optimize a layered management strategy for follow-up with a deep learning model.

Understanding healthcare efficiency-an AI-supported narrative review of diverse terminologies used.

BMC medical education
BACKGROUND: Physicians have become more responsible for pursuing healthcare efficiency. However, contemporary literature uses multiple terminologies to describe healthcare efficiency. To identify which term is best suitable for medical education to e...

Embracing the changes and challenges with modern early drug discovery.

Expert opinion on drug discovery
INTRODUCTION: The landscape of early drug discovery is rapidly evolving, fueled by significant advancements in artificial intelligence (AI) and machine learning (ML), which are transforming the way drugs are discovered. As traditional drug discovery ...

Cost-effectiveness of novel diagnostic tools for idiopathic pulmonary fibrosis in the United States.

BMC health services research
OBJECTIVES: Novel non-invasive machine learning algorithms may improve accuracy and reduce the need for biopsy when diagnosing idiopathic pulmonary fibrosis (IPF). We conducted a cost-effectiveness analysis of diagnostic strategies for IPF.