AI Medical Compendium Topic:
Protein Binding

Clear Filters Showing 571 to 580 of 813 articles

Machine learning reveals a non-canonical mode of peptide binding to MHC class II molecules.

Immunology
MHC class II molecules play a fundamental role in the cellular immune system: they load short peptide fragments derived from extracellular proteins and present them on the cell surface. It is currently thought that the peptide binds lying more or les...

Protein-Protein Interaction Interface Residue Pair Prediction Based on Deep Learning Architecture.

IEEE/ACM transactions on computational biology and bioinformatics
MOTIVATION: Proteins usually fulfill their biological functions by interacting with other proteins. Although some methods have been developed to predict the binding sites of a monomer protein, these are not sufficient for prediction of the interactio...

Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning.

Scientific reports
Protein-protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large ...

Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions.

Journal of chemical information and modeling
The prediction of protein-ligand binding affinity has recently been improved remarkably by machine-learning-based scoring functions. For example, using a set of simple descriptors representing the atomic distance counts, the RF-Score improves the Pea...

Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data.

BMC bioinformatics
BACKGROUND: One goal of structural biology is to understand how a protein's 3-dimensional conformation determines its capacity to interact with potential ligands. In the case of small chemical ligands, deconstructing a static protein-ligand complex i...

Staged heterogeneity learning to identify conformational B-cell epitopes from antigen sequences.

BMC genomics
BACKGROUND: The broad heterogeneity of antigen-antibody interactions brings tremendous challenges to the design of a widely applicable learning algorithm to identify conformational B-cell epitopes. Besides the intrinsic heterogeneity introduced by di...

Study of Structure-active Relationship for Inhibitors of HIV-1 Integrase LEDGF/p75 Interaction by Machine Learning Methods.

Molecular informatics
HIV-1 integrase (IN) is a promising target for anti-AIDS therapy, and LEDGF/p75 is proved to enhance the HIV-1 integrase strand transfer activity in vitro. Blocking the interaction between IN and LEDGF/p75 is an effective way to inhibit HIV replicati...

RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.

BMC bioinformatics
BACKGROUND: RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins (RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the RBPs correctly recog...

A Hybrid Knowledge-Based and Empirical Scoring Function for Protein-Ligand Interaction: SMoG2016.

Journal of chemical information and modeling
We present the third generation of our scoring function for the prediction of protein-ligand binding free energy. This function is now a hybrid between a knowledge-based potential and an empirical function. We constructed a diversified set of ∼1000 c...