AIMC Topic: Protein Domains

Clear Filters Showing 41 to 50 of 80 articles

Computational and artificial neural network based study of functional SNPs of human LEPR protein associated with reproductive function.

Journal of cellular biochemistry
Genetic polymorphisms are mostly associated with inherited diseases, detecting and analyzing the biological significance of functional single-nucleotide polymorphisms (SNPs) using wet laboratory experiments is an arduous task hence the computational ...

DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.

BMC bioinformatics
BACKGROUND: Protein secondary structure (PSS) is critical to further predict the tertiary structure, understand protein function and design drugs. However, experimental techniques of PSS are time consuming and expensive, and thus it's very urgent to ...

Predicting drug-target interaction network using deep learning model.

Computational biology and chemistry
BACKGROUND: Traditional methods for drug discovery are time-consuming and expensive, so efforts are being made to repurpose existing drugs. To find new ways for drug repurposing, many computational approaches have been proposed to predict drug-target...

iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.

Proteins
Quantitative evaluation of binding affinity changes upon mutations is crucial for protein engineering and drug design. Machine learning-based methods are gaining increasing momentum in this field. Due to the limited number of experimental data, using...

Computational discovery of direct associations between GO terms and protein domains.

BMC bioinformatics
BACKGROUND: Families of related proteins and their different functions may be described systematically using common classifications and ontologies such as Pfam and GO (Gene Ontology), for example. However, many proteins consist of multiple domains, a...

SeqSVM: A Sequence-Based Support Vector Machine Method for Identifying Antioxidant Proteins.

International journal of molecular sciences
Antioxidant proteins can be beneficial in disease prevention. More attention has been paid to the functionality of antioxidant proteins. Therefore, identifying antioxidant proteins is important for the study. In our work, we propose a computational m...

DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC.

Journal of theoretical biology
A DNA-binding protein (DNA-BP) is a protein that can bind and interact with a DNA. Identification of DNA-BPs using experimental methods is expensive as well as time consuming. As such, fast and accurate computational methods are sought for predicting...

Genes sharing the protein family domain decrease the performance of classification with RNA-seq genomic signatures.

Biology direct
BACKGROUND: The experience with running various types of classification on the CAMDA neuroblastoma dataset have led us to the conclusion that the results are not always obvious and may differ depending on type of analysis and selection of genes used ...

MoRFPred-plus: Computational Identification of MoRFs in Protein Sequences using Physicochemical Properties and HMM profiles.

Journal of theoretical biology
MOTIVATION: Intrinsically Disordered Proteins (IDPs) lack stable tertiary structure and they actively participate in performing various biological functions. These IDPs expose short binding regions called Molecular Recognition Features (MoRFs) that p...

A new model of flavonoids affinity towards P-glycoprotein: genetic algorithm-support vector machine with features selected by a modified particle swarm optimization algorithm.

Archives of pharmacal research
Flavonoids exhibit a high affinity for the purified cytosolic NBD (C-terminal nucleotide-binding domain) of P-glycoprotein (P-gp). To explore the affinity of flavonoids for P-gp, quantitative structure-activity relationship (QSAR) models were develop...