AIMC Topic: Proteins

Clear Filters Showing 91 to 100 of 1967 articles

Estimating Absolute Protein-Protein Binding Free Energies by a Super Learner Model.

Journal of chemical information and modeling
Protein-protein binding is central to most biochemical processes of all living beings. Its importance underlies mechanisms ranging from cell interactions to metabolic control, but also to biotechnology, such as the development of therapeutic monoclo...

T-ALPHA: A Hierarchical Transformer-Based Deep Neural Network for Protein-Ligand Binding Affinity Prediction with Uncertainty-Aware Self-Learning for Protein-Specific Alignment.

Journal of chemical information and modeling
There is significant interest in targeting disease-causing proteins with small molecule inhibitors to restore healthy cellular states. The ability to accurately predict the binding affinity of small molecules to a protein target in silico enables the...

Deep Learning Protocol for Predicting Full-Spectrum Infrared and Raman Spectra of Polypeptides and Proteins Using All-Atom Models.

The journal of physical chemistry letters
Infrared (IR) spectroscopy and Raman spectroscopy are powerful tools for probing protein and peptide structures due to their capability to provide molecular fingerprints. As a popular spectral simulation method, the quantum chemistry (QC) calculation...

AI protocol for retrieving protein dynamic structures from two-dimensional infrared spectra.

Proceedings of the National Academy of Sciences of the United States of America
Understanding the dynamic evolution of protein structures is crucial for uncovering their biological functions. Yet, real-time prediction of these dynamic structures remains a significant challenge. Two-dimensional infrared (2DIR) spectroscopy is a p...

Simpler Protein Domain Identification Using Spectral Clustering.

Proteins
The decomposition of a biomolecular complex into domains is an important step to investigate biological functions and ease structure determination. A successful approach to do so is the SPECTRUS algorithm, which provides a segmentation based on spect...

Deep Learning-Assisted Discovery of Protein Entangling Motifs.

Biomacromolecules
Natural topological proteins exhibit unique properties including enhanced stability, controlled quaternary structures, and dynamic switching properties, highlighting topology as a unique dimension in protein engineering. Although artificial design an...

Self-supervised machine learning methods for protein design improve sampling but not the identification of high-fitness variants.

Science advances
Machine learning (ML) is changing the world of computational protein design, with data-driven methods surpassing biophysical-based methods in experimental success. However, they are most often reported as case studies, lack integration and standardiz...

SEGT-GO: a graph transformer method based on PPI serialization and explanatory artificial intelligence for protein function prediction.

BMC bioinformatics
BACKGROUND: A massive amount of protein sequences have been obtained, but their functions remain challenging to discern. In recent research on protein function prediction, Protein-Protein Interaction (PPI) Networks have played a crucial role. Uncover...

Modeling Boltzmann-weighted structural ensembles of proteins using artificial intelligence-based methods.

Current opinion in structural biology
This review highlights recent advances in AI-driven methods for generating Boltzmann-weighted structural ensembles, which are crucial for understanding biomolecular dynamics and drug discovery. With the rise of deep learning models such as AlphaFold2...

Severe deviation in protein fold prediction by advanced AI: a case study.

Scientific reports
Artificial intelligence (AI) and deep learning are making groundbreaking strides in protein structure prediction. AlphaFold is remarkable in this arena for its outstanding accuracy in modelling proteins fold based solely on their amino acid sequences...