AIMC Topic: Proteins

Clear Filters Showing 1041 to 1050 of 1970 articles

Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.

BMC bioinformatics
BACKGROUND: Computational prediction of drug-target interactions (DTI) is vital for drug discovery. The experimental identification of interactions between drugs and target proteins is very onerous. Modern technologies have mitigated the problem, lev...

DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening.

Genomics, proteomics & bioinformatics
Accurate identification of compound-protein interactions (CPIs) in silico may deepen our understanding of the underlying mechanisms of drug action and thus remarkably facilitate drug discovery and development. Conventional similarity- or docking-base...

Improved protein structure prediction using potentials from deep learning.

Nature
Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence. This problem is of fundamental importance as the structure of a protein largely determines its function; however, protein str...

Using Weighted Extreme Learning Machine Combined With Scale-Invariant Feature Transform to Predict Protein-Protein Interactions From Protein Evolutionary Information.

IEEE/ACM transactions on computational biology and bioinformatics
Protein-Protein Interactions (PPIs) play an irreplaceable role in biological activities of organisms. Although many high-throughput methods are used to identify PPIs from different kinds of organisms, they have some shortcomings, such as high cost an...

DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.

BMC bioinformatics
BACKGROUND: Recently developed methods of protein contact prediction, a crucially important step for protein structure prediction, depend heavily on deep neural networks (DNNs) and multiple sequence alignments (MSAs) of target proteins. Protein seque...

ProDCoNN: Protein design using a convolutional neural network.

Proteins
Designing protein sequences that fold to a given three-dimensional (3D) structure has long been a challenging problem in computational structural biology with significant theoretical and practical implications. In this study, we first formulated this...

Biophysical prediction of protein-peptide interactions and signaling networks using machine learning.

Nature methods
In mammalian cells, much of signal transduction is mediated by weak protein-protein interactions between globular peptide-binding domains (PBDs) and unstructured peptidic motifs in partner proteins. The number and diversity of these PBDs (over 1,800 ...

Robust Prediction of Single and Multiple Point Protein Mutations Stability Changes.

Biomolecules
Accurate prediction of protein stability changes resulting from amino acid substitutions is of utmost importance in medicine to better understand which mutations are deleterious, leading to diseases, and which are neutral. Since conducting wet lab ex...

A generative model for constructing nucleic acid sequences binding to a protein.

BMC genomics
BACKGROUND: Interactions between protein and nucleic acid molecules are essential to a variety of cellular processes. A large amount of interaction data generated by high-throughput technologies have triggered the development of several computational...

Identification of self-interacting proteins by integrating random projection classifier and finite impulse response filter.

BMC genomics
BACKGROUND: Identification of protein-protein interactions (PPIs) is crucial for understanding biological processes and investigating the cellular functions of genes. Self-interacting proteins (SIPs) are those in which more than two identical protein...