AIMC Topic: Proteins

Clear Filters Showing 31 to 40 of 1967 articles

High-Throughput Analysis of Protein Adsorption to a Large Library of Polymers Using Liquid Extraction Surface Analysis-Tandem Mass Spectrometry (LESA-MS/MS).

Analytical chemistry
Biomaterials play an important role in medicine from contact lenses to joint replacements. High-throughput screening coupled with machine learning has identified synthetic polymers that prevent bacterial biofilm formation, prevent fungal cell attachm...

Designing diverse and high-performance proteins with a large language model in the loop.

PLoS computational biology
We present a protein engineering approach to directed evolution with machine learning that integrates a new semi-supervised neural network fitness prediction model, Seq2Fitness, and an innovative optimization algorithm, biphasic annealing for diverse...

Multi-view based heterogeneous graph contrastive learning for drug-target interaction prediction.

Journal of biomedical informatics
Drug-Target Interaction (DTI) prediction plays a pivotal role in accelerating drug discovery and development by identifying novel interactions between drugs and targets. Most previous studies on Drug-Protein Pair (DPP) networks have primarily focused...

Measuring alignment of structural proteins in engineered tissue constructs using polarized Raman spectroscopy.

PloS one
Measures of structural protein alignment within biological and engineered tissues are needed for improved understanding of their mechanical behavior and functionality. We advance our method of measuring protein alignment using polarized Raman spectro...

Prediction of drug-target interactions based on substructure subsequences and cross-public attention mechanism.

PloS one
Drug-target interactions (DTIs) play a critical role in drug discovery and repurposing. Deep learning-based methods for predicting drug-target interactions are more efficient than wet-lab experiments. The extraction of original and substructural feat...

Explainability of Protein Deep Learning Models.

International journal of molecular sciences
Protein embeddings are the new main source of information about proteins, producing state-of-the-art solutions to many problems, including protein interaction prediction, a fundamental issue in proteomics. Understanding the embeddings and what causes...

Reliable protein-protein docking with AlphaFold, Rosetta, and replica exchange.

eLife
Despite the recent breakthrough of AlphaFold (AF) in the field of protein sequence-to-structure prediction, modeling protein interfaces and predicting protein complex structures remains challenging, especially when there is a significant conformation...

EMOCPD: Efficient Attention-Based Models for Computational Protein Design Using Amino Acid Microenvironment.

Journal of chemical information and modeling
Computational protein design (CPD) refers to the use of computational methods to design proteins. Traditional methods relying on energy functions and heuristic algorithms for sequence design are inefficient and do not meet the demands of the big data...

CrypToth: Cryptic Pocket Detection through Mixed-Solvent Molecular Dynamics Simulations-Based Topological Data Analysis.

Journal of chemical information and modeling
Some functional proteins undergo conformational changes to expose hidden binding sites when a binding molecule approaches their surface. Such binding sites are called cryptic sites and are important targets for drug discovery. However, it is still di...

On the Difficulty to Rescore Hits from Ultralarge Docking Screens.

Journal of chemical information and modeling
Docking-based virtual screening tools customized to mine ultralarge chemical spaces are consistently reported to yield both higher hit rates and more potent ligands than that achieved by conventional docking of smaller million-sized compound librarie...