AIMC Topic: Quantitative Structure-Activity Relationship

Clear Filters Showing 21 to 30 of 494 articles

A dataset for machine learning-based QSAR models establishment to screen beta-lactamase inhibitors using the FARM -BIOMOL chemical library.

BMC research notes
OBJECTIVES: Beta-lactamase is a bacterial enzyme that deactivates beta-lactam antibiotics, and it is one of the leading causes of antibiotic resistance problems globally. In current drug discovery research, molecular simulation, like molecular dockin...

Predicting the Mutagenic Activity of Nitroaromatics Using Conceptual Density Functional Theory Descriptors and Explainable No-Code Machine Learning Approaches.

Journal of chemical information and modeling
Nitroaromatic compounds (NAs) are widely used in industrial applications but pose significant genotoxic risks, necessitating accurate mutagenicity prediction for chemical safety assessments. This study integrates conceptual density functional theory ...

Enhanced in silico QSAR-based screening of butyrylcholinesterase inhibitors using multi-feature selection and machine learning.

SAR and QSAR in environmental research
Butyrylcholinesterase inhibition offers one of the formulated solutions to tackle the aggravating symptoms of dementia that downgrades to cholinergic neuronal loss in Alzheimer's disease. We developed a QSAR model to facilitate the identification of ...

AI-Augmented R-Group Exploration in Medicinal Chemistry.

Journal of chemical information and modeling
Efficient R-group exploration in the vast chemical space, enabled by increasingly available building blocks or generative AI, remains an open challenge. Here, we developed an enhanced Free-Wilson QSAR model embedding R-groups by atom-centric pharmaco...

Emerging horizons of AI in pharmaceutical research.

Advances in pharmacology (San Diego, Calif.)
Artificial Intelligence (AI) has revolutionized drug discovery by enhancing data collection, integration, and predictive modeling across various critical stages. It aggregates vast biological and chemical data, including genomic information, protein ...

A semiempirical and machine learning approach for fragment-based structural analysis of non-hydroxamate HDAC3 inhibitors.

Biophysical chemistry
Interest in HDAC3 inhibitors (HDAC3i) for pharmacological applications outside of cancer is growing. However, concerns regarding the possible mutagenicity of the commonly used hydroxamates (zinc-binding groups, ZBGs) are also increasing. Considering ...

Prediction of the Extent of Blood-Brain Barrier Transport Using Machine Learning and Integration into the LeiCNS-PK3.0 Model.

Pharmaceutical research
INTRODUCTION: The unbound brain-to-plasma partition coefficient (K) is an essential parameter for predicting central nervous system (CNS) drug disposition using physiologically-based pharmacokinetic (PBPK) modeling. K values for specific compounds ar...

Classification and regression machine learning models for predicting mixed toxicity of carbamazepine and its transformation products.

Environmental research
Carbamazepine (CBZ) and its transformation products (TPs) often occur in aquatic environments in the form of mixtures, posing potential risks to ecosystems. However, establishing standardized protocols for synthesizing, isolating, and acquiring these...

Deep Learning Combined with Quantitative Structure‒Activity Relationship Accelerates De Novo Design of Antifungal Peptides.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Novel antifungal drugs that evade resistance are urgently needed for Candida infections. Antifungal peptides (AFPs) are potential candidates due to their specific mechanism of action, which makes them less prone to developing drug resistance. An AFP ...

In-silico exploring pathway and mechanism-based therapeutics for allergic rhinitis: Network pharmacology, molecular docking, ADMET, quantum chemistry and machine learning based QSAR approaches.

Computers in biology and medicine
Allergic rhinitis is a devastating health complication that interrupts the quality of daily life and significantly affects around 40 % of the population worldwide. Despite the availability of various treatment options, many patients continue to strug...