AIMC Topic: Refraction, Ocular

Clear Filters Showing 1 to 10 of 48 articles

Interpretable machine learning models for predicting childhood myopia from school-based screening data.

Scientific reports
This study assessed the efficacy of various diagnostic indicators and machine learning (ML) models in predicting childhood myopia. A total of 2,365 children aged 5-12 years were included in the study. The participants were exposed to non-cycloplegic ...

Adopting machine learning to predict nomogram for small incision lenticule extraction (SMILE).

International ophthalmology
PURPOSE: To predict nomogram for small incision lenticule extraction (SMILE) using machine learning technology and preoperative clinical data.

Intraocular lens calculation formula developed using artificial intelligence for ultrasonic biometry.

Arquivos brasileiros de oftalmologia
PURPOSE: We developed an artificial intelligence program for calculating intraocular lenses and analyzed its accuracy rate via ultrasonic biometry. This endeavor is aimed at enhancing precision and efficacy in the selection of intraocular lenses, par...

Network meta-analysis of intraocular lens power calculation formulas based on artificial intelligence in short eyes.

BMC ophthalmology
PURPOSE: To systematically assess and compare the accuracy of artificial intelligence (AI) -based intraocular lens (IOL) power calculation formulas with traditional IOL formulas in patients with short eye length.

Artificial intelligence in the diagnosis and management of refractive errors.

European journal of ophthalmology
Refractive error is among the leading causes of visual impairment globally. The diagnosis and management of refractive error has traditionally relied on comprehensive eye examinations by eye care professionals, but access to these specialized service...

Machine-learning random forest algorithms predict post-cycloplegic myopic corrections from noncycloplegic clinical data.

Optometry and vision science : official publication of the American Academy of Optometry
SIGNIFICANCE: Machine learning random forest algorithms were used to predict objective refractive outcomes after cycloplegic refraction using noncycloplegic clinical data. A classification model predicted post-cycloplegic myopia and could be useful i...

Evaluation of prediction errors in nine intraocular lens calculation formulas using an explainable machine learning model.

BMC ophthalmology
BACKGROUND: The purpose of the study was to evaluate the relationship between prediction errors (PEs) and ocular biometric variables in cataract surgery using nine intraocular lens (IOL) formulas with an explainable machine learning model.