AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Postoperative Period

Showing 1 to 10 of 118 articles

Clear Filters

Postoperative Karnofsky performance status prediction in patients with IDH wild-type glioblastoma: A multimodal approach integrating clinical and deep imaging features.

PloS one
BACKGROUND AND PURPOSE: Glioblastoma is a highly aggressive brain tumor with limited survival that poses challenges in predicting patient outcomes. The Karnofsky Performance Status (KPS) score is a valuable tool for assessing patient functionality an...

Artificial intelligence algorithms enhance urine cytology reporting confidence in postoperative follow-up for upper urinary tract urothelial carcinoma.

International urology and nephrology
PURPOSE: In Taiwan, the incidence of urothelial carcinoma of the upper urinary tract (UTUC) is high and intravesical recurrence is approximately 22%-47%. Thus, postoperative cystoscopy and urine cytology follow-up, which require experienced cytologis...

Development and Validation of an Explainable Prediction Model for Postoperative Recurrence in Pediatric Chronic Rhinosinusitis.

Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery
OBJECTIVE: This study aims to develop an interpretable machine learning (ML) predictive model to assess its efficacy in predicting postoperative recurrence in pediatric chronic rhinosinusitis (CRS).

Prediction of Visual Acuity After Cataract Surgery by Deep Learning Methods Using Clinical Information and Color Fundus Photography.

Current eye research
PURPOSE: To examine the performance of deep-learning models that predicts the visual acuity after cataract surgery using preoperative clinical information and color fundus photography (CFP).

Using a Deep Learning Model to Predict Postoperative Visual Outcomes of Idiopathic Epiretinal Membrane Surgery.

American journal of ophthalmology
PURPOSE: This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images.

Multicenter study on predicting postoperative upper limb muscle strength improvement in cervical spinal cord injury patients using radiomics and deep learning.

Scientific reports
Cervical spinal cord injury is often catastrophic, frequently leading to irreversible impairment. MRI has become the gold standard for evaluating spinal cord injuries (SCI). Our study aimed to assess the accuracy of a radiomics approach, based on mac...

[Application Practice of AI Empowering Post-discharge Specialized Disease Management in Postoperative Rehabilitation of the Lung Cancer Patients Undergoing Surgery].

Zhongguo fei ai za zhi = Chinese journal of lung cancer
BACKGROUND: Lung cancer is the leading malignancy in China in terms of both incidence and mortality. With increased health awareness and the widespread use of low-dose computed tomography (CT), early diagnosis rates have been steadily improving. Surg...

Predicting orthognathic surgery results as postoperative lateral cephalograms using graph neural networks and diffusion models.

Nature communications
Orthognathic surgery, or corrective jaw surgery, is performed to correct severe dentofacial deformities and is increasingly sought for cosmetic purposes. Accurate prediction of surgical outcomes is essential for selecting the optimal treatment plan a...

Automatic Segmentation of Bone Graft in Maxillary Sinus via Distance Constrained Network Guided by Prior Anatomical Knowledge.

IEEE journal of biomedical and health informatics
Maxillary Sinus Lifting is a crucial surgical procedure for addressing insufficient alveolar bone mass andsevere resorption in dental implant therapy. To accurately analyze the geometry changesof the bone graft (BG) in the maxillary sinus (MS), it is...