Journal of bioinformatics and computational biology
32696716
Splice site prediction is crucial for understanding underlying gene regulation, gene function for better genome annotation. Many computational methods exist for recognizing the splice sites. Although most of the methods achieve a competent performanc...
Proceedings of the National Academy of Sciences of the United States of America
33526657
RNA polymerase II (Pol II) generally pauses at certain positions along gene bodies, thereby interrupting the transcription elongation process, which is often coupled with various important biological functions, such as precursor mRNA splicing and gen...
Transcription of eukaryotic genomes involves complex alternative processing of RNAs. Sequencing of full-length RNAs using long reads reveals the true complexity of processing. However, the relatively high error rates of long-read sequencing technolog...
Hereditary disorders are frequently caused by genetic variants that affect pre-messenger RNA splicing. Though genetic variants in the canonical splice motifs are almost always disrupting splicing, the pathogenicity of variants in the noncanonical spl...
A novel framework for the automated evaluation of various deep learning-based splice site detectors is presented. The framework eliminates time-consuming development and experimenting activities for different codebases, architectures, and configurati...
We present RBPNet, a novel deep learning method, which predicts CLIP-seq crosslink count distribution from RNA sequence at single-nucleotide resolution. By training on up to a million regions, RBPNet achieves high generalization on eCLIP, iCLIP and m...
A crucial stage in eukaryote gene expression involves mRNA splicing by a protein assembly known as the spliceosome. This step significantly contributes to generating and properly operating the ultimate gene product. Since non-coding introns disrupt e...
The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. We describe Splam, a novel method for predicting splice junctions in DNA using deep residual convolutional neural networks. Unlike previ...
Mutations that affect RNA splicing significantly impact human diversity and disease. Here we present a method using transformers, a type of machine learning model, to detect splicing from raw 45,000-nucleotide sequences. We generate embeddings with r...
Rates of transcription elongation vary within and across eukaryotic gene bodies. Here, we introduce new methods for predicting elongation rates from nascent RNA sequencing data. First, we devise a probabilistic model that predicts nucleotide-specific...