AIMC Topic: Introns

Clear Filters Showing 1 to 10 of 16 articles

Exon-intron boundary detection made easy by physicochemical properties of DNA.

Molecular omics
Genome architecture in eukaryotes exhibits a high degree of complexity. Amidst the numerous intricacies, the existence of genes as non-continuous stretches composed of exons and introns has garnered significant attention and curiosity among researche...

Optimized convolutional neural network using African vulture optimization algorithm for the detection of exons.

Scientific reports
The detection of exons is an important area of research in genomic sequence analysis. Many signal-processing methods have been established successfully for detecting the exons based on their periodicity property. However, some improvement is still re...

The role of chromatin state in intron retention: A case study in leveraging large scale deep learning models.

PLoS computational biology
Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they...

Splam: a deep-learning-based splice site predictor that improves spliced alignments.

Genome biology
The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. We describe Splam, a novel method for predicting splice junctions in DNA using deep residual convolutional neural networks. Unlike previ...

Benchmarking deep learning splice prediction tools using functional splice assays.

Human mutation
Hereditary disorders are frequently caused by genetic variants that affect pre-messenger RNA splicing. Though genetic variants in the canonical splice motifs are almost always disrupting splicing, the pathogenicity of variants in the noncanonical spl...

2passtools: two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing.

Genome biology
Transcription of eukaryotic genomes involves complex alternative processing of RNAs. Sequencing of full-length RNAs using long reads reveals the true complexity of processing. However, the relatively high error rates of long-read sequencing technolog...

CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores.

Genome medicine
BACKGROUND: Splicing of genomic exons into mRNAs is a critical prerequisite for the accurate synthesis of human proteins. Genetic variants impacting splicing underlie a substantial proportion of genetic disease, but are challenging to identify beyond...

Ranking of non-coding pathogenic variants and putative essential regions of the human genome.

Nature communications
A gene is considered essential if loss of function results in loss of viability, fitness or in disease. This concept is well established for coding genes; however, non-coding regions are thought less likely to be determinants of critical functions. H...

Variants in GNPTAB, GNPTG and NAGPA genes are associated with stutterers.

Gene
Non-syndromic stuttering is a neurodevelopmental disorder characterized by disruptions in normal flow of speech in the form of repetition, prolongation and involuntary halts. Previously, mutations with more severe effects on GNPTAB and GNPTG have bee...

Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.

BMC bioinformatics
BACKGROUND: Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons, and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of human sp...