AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

RNA Splice Sites

Showing 1 to 10 of 19 articles

Clear Filters

EDeepSSP: Explainable deep neural networks for exact splice sites prediction.

Journal of bioinformatics and computational biology
Splice site prediction is crucial for understanding underlying gene regulation, gene function for better genome annotation. Many computational methods exist for recognizing the splice sites. Although most of the methods achieve a competent performanc...

A machine learning-based framework for modeling transcription elongation.

Proceedings of the National Academy of Sciences of the United States of America
RNA polymerase II (Pol II) generally pauses at certain positions along gene bodies, thereby interrupting the transcription elongation process, which is often coupled with various important biological functions, such as precursor mRNA splicing and gen...

2passtools: two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing.

Genome biology
Transcription of eukaryotic genomes involves complex alternative processing of RNAs. Sequencing of full-length RNAs using long reads reveals the true complexity of processing. However, the relatively high error rates of long-read sequencing technolog...

Benchmarking deep learning splice prediction tools using functional splice assays.

Human mutation
Hereditary disorders are frequently caused by genetic variants that affect pre-messenger RNA splicing. Though genetic variants in the canonical splice motifs are almost always disrupting splicing, the pathogenicity of variants in the noncanonical spl...

An automated framework for evaluation of deep learning models for splice site predictions.

Scientific reports
A novel framework for the automated evaluation of various deep learning-based splice site detectors is presented. The framework eliminates time-consuming development and experimenting activities for different codebases, architectures, and configurati...

Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning.

Genome biology
We present RBPNet, a novel deep learning method, which predicts CLIP-seq crosslink count distribution from RNA sequence at single-nucleotide resolution. By training on up to a million regions, RBPNet achieves high generalization on eCLIP, iCLIP and m...

An effective deep learning-based approach for splice site identification in gene expression.

Science progress
A crucial stage in eukaryote gene expression involves mRNA splicing by a protein assembly known as the spliceosome. This step significantly contributes to generating and properly operating the ultimate gene product. Since non-coding introns disrupt e...

Splam: a deep-learning-based splice site predictor that improves spliced alignments.

Genome biology
The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. We describe Splam, a novel method for predicting splice junctions in DNA using deep residual convolutional neural networks. Unlike previ...

Transformers significantly improve splice site prediction.

Communications biology
Mutations that affect RNA splicing significantly impact human diversity and disease. Here we present a method using transformers, a type of machine learning model, to detect splicing from raw 45,000-nucleotide sequences. We generate embeddings with r...

Probabilistic and machine-learning methods for predicting local rates of transcription elongation from nascent RNA sequencing data.

Nucleic acids research
Rates of transcription elongation vary within and across eukaryotic gene bodies. Here, we introduce new methods for predicting elongation rates from nascent RNA sequencing data. First, we devise a probabilistic model that predicts nucleotide-specific...