The biogeochemical cycling of sulfur (S) in paddy soil influences cadmium (Cd) and arsenic (As) migration. However, the impact of S application on Cd and As within the soil-rice system has not been fully explored. This study aimed to examine the effe...
Micro/nano plastics (M/NPs) and antibiotics, as widely coexisting pollutants in environment, pose serious threats to soil ecosystem. The purpose of this study was to systematically evaluate the ecological effects of the co-exposure of M/NPs and antib...
Ecotoxicology and environmental safety
Oct 23, 2024
Micro/nanoplastics (MNPs) and heavy metals (HMs) coexist worldwide. Existing studies have reported different or even contradictory toxic effects of co-exposure to MNPs and HMs on plants, which may be related to various influencing factors. In this st...
Vanadium (V) contamination posed a significant environmental challenge, while phytoremediation offered a sustainable solution. Phytoremediation performance was often limited by the slow growth cycles of traditional plants. A novel approach to enhanci...
Karst soils often exhibit elevated zinc (Zn) levels, providing an opportunity to cultivate Zn-enriched crops. (meanwhile) However, these soils also frequently contain high background levels of toxic metals, particularly cadmium (Cd), posing potential...
Environmental contamination of microplastics (MPs) is ubiquitous worldwide, and co-contamination of arable soils with MPs and other pollutants is of increasing concern, and may lead to unexpected consequences on crop production. However, the overall ...
Excessive cadmium (Cd) in brown rice has detrimental effects on rice growth and human health. Water management is a cost-effective, eco-friendly measure to suppress Cd accumulation in rice. However, there is no acknowledged water management regime th...
Metal contamination in soil poses environmental and health risks requiring effective remediation strategies. This study introduces an innovative approach of synergistically employing biochar and bacterial inoculum of Serratia marcescens to address to...
Deep learning models can predict uptake of emerging contaminants in plants with improved accuracy because they leverage advanced data-driven approaches to capture non-linear relationships that traditional models struggle to address. Traditional model...
Pteris vittata (P. vittata) possesses significant potential in remediating arsenic (As) soil pollution. Understanding the habitat suitability of P. vittata in China and pinpointing the key drivers that influence its distribution can facilitate the id...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.