AIMC Topic: Soil

Clear Filters Showing 71 to 80 of 266 articles

Quantitative investigation and intelligent forecasting of thermal conductivity in lime-modified red clay.

PloS one
This paper delves into the engineering applications of lime-stabilized red clay, a highly water-sensitive material, particularly in the context of the climatic conditions prevalent in the Dalian region. We systematically investigate the impact of wat...

Machine learning reveals dynamic controls of soil nitrous oxide emissions from diverse long-term cropping systems.

Journal of environmental quality
Soil nitrous oxide (NO) emissions exhibit high variability in intensively managed cropping systems, which challenges our ability to understand their complex interactions with controlling factors. We leveraged 17 years (2003-2019) of measurements at t...

Leveraging machine learning for sustainable cultivation of Zn-enriched crops in Cd-contaminated karst regions.

The Science of the total environment
Karst soils often exhibit elevated zinc (Zn) levels, providing an opportunity to cultivate Zn-enriched crops. (meanwhile) However, these soils also frequently contain high background levels of toxic metals, particularly cadmium (Cd), posing potential...

Artificial intelligence-based digital pathology for the detection and quantification of soil-transmitted helminths eggs.

PLoS neglected tropical diseases
BACKGROUND: Conventional microscopy of Kato-Katz (KK1.0) thick smears, the primary method for diagnosing soil-transmitted helminth (STH) infections, has limited sensitivity and is error-prone. Artificial intelligence-based digital pathology (AI-DP) m...

Evaluating machine learning performance in predicting sodium adsorption ratio for sustainable soil-water management in the eastern Mediterranean.

Journal of environmental management
Soil salinization is a critical global issue for sustainable agriculture, impacting crop yields and posing a threat to achieving the Sustainable Development Goal (SDG) of ensuring food security. It is necessary to monitor it in detail and uncover its...

Inversion model of soil salinity in alfalfa covered farmland based on sensitive variable selection and machine learning algorithms.

PeerJ
PURPOSE: Timely and accurate monitoring of soil salinity content (SSC) is essential for precise irrigation management of large-scale farmland. Uncrewed aerial vehicle (UAV) low-altitude remote sensing with high spatial and temporal resolution provide...

Co-exposure to microplastics and soil pollutants significantly exacerbates toxicity to crops: Insights from a global meta and machine-learning analysis.

The Science of the total environment
Environmental contamination of microplastics (MPs) is ubiquitous worldwide, and co-contamination of arable soils with MPs and other pollutants is of increasing concern, and may lead to unexpected consequences on crop production. However, the overall ...

Machine learning and structural equation modeling for revealing the influence factors and pathways of different water management regimes acting on brown rice cadmium.

The Science of the total environment
Excessive cadmium (Cd) in brown rice has detrimental effects on rice growth and human health. Water management is a cost-effective, eco-friendly measure to suppress Cd accumulation in rice. However, there is no acknowledged water management regime th...

Integrating IoT for Soil Monitoring and Hybrid Machine Learning in Predicting Tomato Crop Disease in a Typical South India Station.

Sensors (Basel, Switzerland)
This study develops a hybrid machine learning (ML) algorithm integrated with IoT technology to improve the accuracy and efficiency of soil monitoring and tomato crop disease prediction in Anakapalle, a south Indian station. An IoT device collected on...

Synergistic biochar and Serratia marcescens tackle toxic metal contamination: A multifaceted machine learning approach.

Journal of environmental management
Metal contamination in soil poses environmental and health risks requiring effective remediation strategies. This study introduces an innovative approach of synergistically employing biochar and bacterial inoculum of Serratia marcescens to address to...