Establishment of a prognostic model based on ER stress-related cell death genes and proposing a novel combination therapy in acute myeloid leukemia.

Journal: Journal of translational medicine
Published Date:

Abstract

BACKGROUND: Acute myeloid leukemia (AML) is a highly heterogeneous malignancy, presenting significant challenges in accurately predicting patient prognosis. Dysregulation of endoplasmic reticulum (ER) stress and resistance to programmed cell death (PCD) are hallmarks of AML cells. However, the prognostic significance of the interplay between ER stress and cell death pathways in AML remains largely unexplored.

Authors

  • Minghui Wang
    College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China.
  • Huajian Xian
    Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Xiaoli Xia
    Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Wenjie Zhang
    Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, Chengdu, 610041, People's Republic of China.
  • Zixuan Huang
    Department of Radiology, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Department of Radiology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China (Z.H.).
  • Chaoqun Lu
    Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Yuling Zheng
    Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Yixin Wang
    Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK.
  • Shufeng Xie
    Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Renyao Pan
    Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • YaoYifu Yu
    Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Ruiheng Wang
    Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Huijian Zheng
    Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Guorui Huang
    Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. hgr12038@rjh.com.cn.
  • Han Liu
    Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China.