Artificial intelligence(AI)-based methods have been extensively used for the detection and management of various common retinal conditions, but their targeted development for inherited retinal diseases (IRD) is still nascent. In the context of limite...
We focus on the utility of artificial intelligence (AI) in the management of macular hole (MH). We synthesize 25 studies, comprehensively reporting on each AI model's development strategy, validation, tasks, performance, strengths, and limitations. A...
Meibomian gland dysfunction (MGD) is increasingly recognized as a critical contributor to evaporative dry eye, significantly impacting visual quality. With a global prevalence estimated at 35.8 %, it presents substantial challenges for clinicians. Co...
Cystoid macular edema (CME) is a sight-threatening condition often associated with inflammatory and diabetic diseases. Early detection is crucial to prevent irreversible vision loss. Artificial intelligence (AI) has shown promise in automating CME di...
Diabetic retinopathy (DR) poses a significant challenge in diabetes management, with its progression often asymptomatic until advanced stages. This underscores the urgent need for cost-effective and reliable screening methods. Consequently, the integ...
Generative artificial intelligence (AI) has revolutionized medicine over the past several years. A generative adversarial network (GAN) is a deep learning framework that has become a powerful technique in medicine, particularly in ophthalmology for i...
Artificial Intelligence (AI) has become a focus of research in the rapidly evolving field of ophthalmology. Nevertheless, there is a lack of systematic studies on the health economics of AI in this field. We examine studies from the PubMed, Google Sc...
Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy ...