AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Macular Edema

Showing 1 to 10 of 91 articles

Clear Filters

Integration of Optical Coherence Tomography Images and Real-Life Clinical Data for Deep Learning Modeling: A Unified Approach in Prognostication of Diabetic Macular Edema.

Journal of biophotonics
The primary ocular effect of diabetes is diabetic retinopathy (DR), which is associated with diabetic microangiopathy. Diabetic macular edema (DME) can cause vision loss for people with DR. For this reason, deciding on the appropriate treatment and f...

Estimating Visual Acuity With Spectacle Correction From Fundus Photos Using Artificial Intelligence.

JAMA network open
IMPORTANCE: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-correc...

Reinforcement-based leveraging transfer learning for multiclass optical coherence tomography images classification.

Scientific reports
The accurate diagnosis of retinal diseases, such as Diabetic Macular Edema (DME) and Age-related Macular Degeneration (AMD), is essential for preventing vision loss. Optical Coherence Tomography (OCT) imaging plays a crucial role in identifying these...

Application of deep learning algorithm for judicious use of anti-VEGF in diabetic macular edema.

Scientific reports
Diabetic Macular Edema (DME) is a major complication of diabetic retinopathy characterized by fluid accumulation in the macula, leading to vision impairment. The standard treatment involves anti-VEGF (Vascular Endothelial Growth Factor) therapy, but ...

Performance of a Deep Learning Diabetic Retinopathy Algorithm in India.

JAMA network open
IMPORTANCE: While prospective studies have investigated the accuracy of artificial intelligence (AI) for detection of diabetic retinopathy (DR) and diabetic macular edema (DME), to date, little published data exist on the clinical performance of thes...

Predicting Visual Acuity after Retinal Vein Occlusion Anti-VEGF Treatment: Development and Validation of an Interpretable Machine Learning Model.

Journal of medical systems
Accurate prediction of post-treatment visual acuity in macular edema secondary to retinal vein occlusion (RVO-ME) is critical for optimizing anti-VEGF therapy and improving clinical outcomes. While machine learning (ML) has shown promise in ophthalmi...

Detection of diabetic macular oedema patterns with fine-grained image categorisation on optical coherence tomography.

BMJ open ophthalmology
PURPOSE: To develop an artificial intelligence (AI) system for detecting pathological patterns of diabetic macular oedema (DME) with fine-grained image categorisation using optical coherence tomography (OCT) images.

EFCNet enhances the efficiency of segmenting clinically significant small medical objects.

Scientific reports
Efficient segmentation of small hyperreflective dots, key biomarkers for diseases like macular edema, is critical for diagnosis and treatment monitoring.However, existing models, including Convolutional Neural Networks (CNNs) and Transformers, strugg...