PURPOSE: To evaluate the performance of a multimodal large language model (LLM), Claude 3.5 Sonnet, in interpreting meibography images for Meibomian gland dropout grading and morphological abnormality detection.
Optometry and vision science : official publication of the American Academy of Optometry
Jan 13, 2025
SIGNIFICANCE: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analy...
BACKGROUND: Automatic segmentation of meibomian glands in near-infrared meibography images is basis of morphological parameter analysis, which plays a crucial role in facilitating the diagnosis of meibomian gland dysfunction (MGD). The special strip ...
Meibomian gland dysfunction (MGD) is increasingly recognized as a critical contributor to evaporative dry eye, significantly impacting visual quality. With a global prevalence estimated at 35.8 %, it presents substantial challenges for clinicians. Co...
This study introduces a deep learning approach to predicting demographic features from meibography images. A total of 689 meibography images with corresponding subject demographic data were used to develop a deep learning model for predicting gland m...
BACKGROUND: Artificial intelligence is developing rapidly, bringing increasing numbers of intelligent products into daily life. However, it has little progress in dry eye, which is a common disease and associated with meibomian gland dysfunction (MGD...
PURPOSE: Develop a deep learning-based automated method to segment meibomian glands (MG) and eyelids, quantitatively analyze the MG area and MG ratio, estimate the meiboscore, and remove specular reflections from infrared images.
Meibomian glands (MG) are large sebaceous glands located below the tarsal conjunctiva and the abnormalities of these glands cause Meibomian gland dysfunction (MGD) which is responsible for evaporative dry eye disease (DED). Accurate MG segmentation i...
PURPOSE: This study examined whether hyperspectral stimulated Raman scattering (hsSRS) microscopy can detect differences in meibum lipid to protein composition of normal and evaporative dry eye subjects with meibomian gland dysfunction.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.