BACKGROUND: Recent investigations of recovery from alcohol use disorder (AUD) have distinguished subgroups of high and low functioning recovery in data from randomized controlled trials of behavioral treatments for AUD. Analyses considered various in...
Alcoholism, a progressive loss of control over alcohol consumption, deteriorates mental and physical health over time. Automatic alcoholism detection can aid in early interventions and timely corrective actions. For this purpose, electroencephalogram...
INTRODUCTION: This study aimed to evaluate effects of three machine learning based adjustments made to an eHealth intervention for mild alcohol use disorder, regarding (a) early dropout, (b) participation duration, and (c) success in reaching persona...
Driving under the influence of alcohol (DUIA) is closely associated with alcohol use disorder (AUD). Our previous study on machine learning (ML) algorithms revealed a very high accuracy of decision trees with neuropsychological features in predicting...
The world has a higher count of death rates as a result of Alcohol consumption. Identification is possible because Alcoholic EEG waves have a certain behavior that is totally different compared to the non-alcoholic individual. The available approache...
Journal of psychopathology and clinical science
Aug 22, 2024
We developed three machine learning models that predict hour-by-hour probabilities of a future lapse back to alcohol use with increasing temporal precision (i.e., lapses in the next week, next day, and next hour). Model features were based on raw sco...
BACKGROUND: Machine learning could predict binge behavior and help develop treatments for bulimia nervosa (BN) and alcohol use disorder (AUD). Therefore, this study evaluates person-specific and pooled prediction models for binge eating (BE), alcohol...
AIMS: Alcohol cravings are considered a major factor in relapse among individuals with alcohol use disorder (AUD). This study aims to investigate the frequency and triggers of cravings in the daily lives of people with alcohol-related issues. Large a...
The rapid evolution of artificial intelligence and the widespread embrace of digital technologies have ushered in a new era of clinical research and practice in hepatology. Although its potential is far from realization, these significant strides hav...
BACKGROUND: Identifying co-occurring mental disorders and elevated risk is vital for optimization of healthcare processes. In this study, we will use DeepBiomarker2, an updated version of our deep learning model to predict the adverse events among pa...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.