Antibodies represent a crucial class of complex protein therapeutics and are essential in the treatment of a wide range of human diseases. Traditional antibody discovery methods, such as hybridoma and phage display technologies, suffer from limitatio...
Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for pr...
Antibodies have the capacity to bind a diverse set of antigens, and they have become critical therapeutics and diagnostic molecules. The binding of antibodies is facilitated by a set of six hypervariable loops that are diversified through genetic rec...
INTRODUCTION: Antibody-mediated immunity is an essential part of the immune system in vertebrates. The ability to specifically bind to antigens allows antibodies to be widely used in the therapy of cancers and other critical diseases. A key step in a...
Both the ABO and Rhesus (Rh) blood groups play crucial roles in blood transfusion medicine. Herein, we report a simple and low-cost paper-based analytical device (PAD) for phenotyping red blood cell (RBC) antigens. Using this Rh typing format, 5 Rh a...
Monoclonal antibodies (mAbs) are often selected from antigen-specific single B cells derived from different hosts, which are notably short-lived in ex vivo culture conditions and hence, arduous to interrogate. The development of several new technique...
The ability to design functional sequences and predict effects of variation is central to protein engineering and biotherapeutics. State-of-art computational methods rely on models that leverage evolutionary information but are inadequate for importa...
The optimization of therapeutic antibodies is time-intensive and resource-demanding, largely because of the low-throughput screening of full-length antibodies (approximately 1 × 10 variants) expressed in mammalian cells, which typically results in fe...
Current sequencing methods allow for detailed samples of T cell receptors (TCR) repertoires. To determine from a repertoire whether its host had been exposed to a target, computational tools that predict TCR-epitope binding are required. Currents too...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.