AIMC Topic: Arabidopsis Proteins

Clear Filters Showing 11 to 13 of 13 articles

AtSubP-2.0: An integrated web server for the annotation of Arabidopsis proteome subcellular localization using deep learning.

The plant genome
The organization of subcellular components in a cell is critical for its function and studying cellular processes, protein-protein interactions, identifying potential drug targets, network analysis, and other systems biology mechanisms. Determining p...

Interpreting machine learning models to investigate circadian regulation and facilitate exploration of clock function.

Proceedings of the National Academy of Sciences of the United States of America
The circadian clock is an important adaptation to life on Earth. Here, we use machine learning to predict complex, temporal, and circadian gene expression patterns in Most significantly, we classify circadian genes using DNA sequence features genera...

Prediction of condition-specific regulatory genes using machine learning.

Nucleic acids research
Recent advances in genomic technologies have generated data on large-scale protein-DNA interactions and open chromatin regions for many eukaryotic species. How to identify condition-specific functions of transcription factors using these data has bec...