AIMC Topic: Autistic Disorder

Clear Filters Showing 21 to 30 of 112 articles

Wearable EEG Neurofeedback Based-on Machine Learning Algorithms for Children with Autism: A Randomized, Placebo-controlled Study.

Current medical science
OBJECTIVE: Behavioral interventions have been shown to ameliorate the electroencephalogram (EEG) dynamics underlying the behavioral symptoms of autism spectrum disorder (ASD), while studies have also demonstrated that mirror neuron mu rhythm-based EE...

Recognition of autism in subcortical brain volumetric images using autoencoding-based region selection method and Siamese Convolutional Neural Network.

International journal of medical informatics
BACKGROUND: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects social interactions and behavior. Accurate and early diagnosis of ASD is still challenging even with the improvements in neuroimaging technology and machine lea...

Deep learning of structural MRI predicts fluid, crystallized, and general intelligence.

Scientific reports
Can brain structure predict human intelligence? T1-weighted structural brain magnetic resonance images (sMRI) have been correlated with intelligence. However, the population-level association does not fully account for individual variability in intel...

A deep learning model for prediction of autism status using whole-exome sequencing data.

PLoS computational biology
Autism is a developmental disability. Research demonstrated that children with autism benefit from early diagnosis and early intervention. Genetic factors are considered major contributors to the development of autism. Machine learning (ML), includin...

3D CNN for neuropsychiatry: Predicting Autism with interpretable Deep Learning applied to minimally preprocessed structural MRI data.

PloS one
Predictive modeling approaches are enabling progress toward robust and reproducible brain-based markers of neuropsychiatric conditions by leveraging the power of multivariate analyses of large datasets. While deep learning (DL) offers another promisi...

Speech and language patterns in autism: Towards natural language processing as a research and clinical tool.

Psychiatry research
Speech and language differences have long been described as important characteristics of autism spectrum disorder (ASD). Linguistic abnormalities range from prosodic differences in pitch, intensity, and rate of speech, to language idiosyncrasies and ...

Attention Analysis in Robotic-Assistive Therapy for Children With Autism.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Children with Autism Spectrum Disorder (ASD) show severe attention deficits, hindering their capacity to acquire new skills. The automatic assessment of their attention response would provide the therapists with an important biomarker to better quant...

Using AI-Based Virtual Companions to Assist Adolescents with Autism in Recognizing and Addressing Cyberbullying.

Sensors (Basel, Switzerland)
Social media platforms and online gaming sites play a pervasive role in facilitating peer interaction and social development for adolescents, but they also pose potential threats to health and safety. It is crucial to tackle cyberbullying issues with...

Discovering the gene-brain-behavior link in autism via generative machine learning.

Science advances
Autism is traditionally diagnosed behaviorally but has a strong genetic basis. A genetics-first approach could transform understanding and treatment of autism. However, isolating the gene-brain-behavior relationship from confounding sources of variab...

A hybrid CNN-SVM model for enhanced autism diagnosis.

PloS one
Autism is a representative disorder of pervasive developmental disorder. It exerts influence upon an individual's behavior and performance, potentially co-occurring with other mental illnesses. Consequently, an effective diagnostic approach proves to...