AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Exome Sequencing

Showing 1 to 10 of 38 articles

Clear Filters

Polishing copy number variant calls on exome sequencing data via deep learning.

Genome research
Accurate and efficient detection of copy number variants (CNVs) is of critical importance owing to their significant association with complex genetic diseases. Although algorithms that use whole-genome sequencing (WGS) data provide stable results wit...

DeNovoCNN: a deep learning approach to de novo variant calling in next generation sequencing data.

Nucleic acids research
De novo mutations (DNMs) are an important cause of genetic disorders. The accurate identification of DNMs from sequencing data is therefore fundamental to rare disease research and diagnostics. Unfortunately, identifying reliable DNMs remains a major...

ABEILLE: a novel method for ABerrant Expression Identification empLoying machine LEarning from RNA-sequencing data.

Bioinformatics (Oxford, England)
MOTIVATION: Current advances in omics technologies are paving the diagnosis of rare diseases proposing a complementary assay to identify the responsible gene. The use of transcriptomic data to identify aberrant gene expression (AGE) has demonstrated ...

Improving the Detection of Potential Cases of Familial Hypercholesterolemia: Could Machine Learning Be Part of the Solution?

Journal of the American Heart Association
BACKGROUND: Familial hypercholesterolemia (FH), while highly prevalent, is a significantly underdiagnosed monogenic disorder. Improved detection could reduce the large number of cardiovascular events attributable to poor case finding. We aimed to ass...

Exome sequence analysis identifies rare coding variants associated with a machine learning-based marker for coronary artery disease.

Nature genetics
Coronary artery disease (CAD) exists on a spectrum of disease represented by a combination of risk factors and pathogenic processes. An in silico score for CAD built using machine learning and clinical data in electronic health records captures disea...

Machine learning to optimize automated RH genotyping using whole-exome sequencing data.

Blood advances
Rh phenotype matching reduces but does not eliminate alloimmunization in patients with sickle cell disease (SCD) due to RH genetic diversity that is not distinguishable by serological typing. RH genotype matching can potentially mitigate Rh alloimmun...

A deep learning model for prediction of autism status using whole-exome sequencing data.

PLoS computational biology
Autism is a developmental disability. Research demonstrated that children with autism benefit from early diagnosis and early intervention. Genetic factors are considered major contributors to the development of autism. Machine learning (ML), includin...

Optimizing sequence data analysis using convolution neural network for the prediction of CNV bait positions.

BMC bioinformatics
BACKGROUND: Accurate prediction of copy number variations (CNVs) from targeted capture next-generation sequencing (NGS) data relies on effective normalization of read coverage profiles. The normalization process is particularly challenging due to hid...

Predicting Diabetic Retinopathy Using a Machine Learning Approach Informed by Whole-Exome Sequencing Studies.

Biomedical and environmental sciences : BES
OBJECTIVE: To establish and validate a novel diabetic retinopathy (DR) risk-prediction model using a whole-exome sequencing (WES)-based machine learning (ML) method.