Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
40039861
Automatic segmentation in Breast Ultrasound (BUS) imaging is vital to BUS computer-aided diagnostic systems. Fully supervised learning approaches can attain high accuracy, yet they depend on pixel-level annotations that are challenging to obtain. As ...
Background The ScreenTrustCAD trial was a prospective study that evaluated the cancer detection rates for combinations of artificial intelligence (AI) computer-aided detection (CAD) and two radiologists. The results raised concerns about the tendency...
OBJECTIVE: To evaluate whether deep learning (DL) analysis of intratumor subregion based on dynamic contrast-enhanced MRI (DCE-MRI) can help predict Ki-67 expression level in breast cancer.
Segmentation of the breast region in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is essential for the automatic measurement of breast density and the quantitative analysis of imaging findings. This study aims to compare various dee...
IEEE journal of biomedical and health informatics
40030423
Accurate breast tumor segmentation in ultrasound images is a crucial step in medical diagnosis and locating the tumor region. However, segmentation faces numerous challenges due to the complexity of ultrasound images, similar intensity distributions,...
The international journal of medical robotics + computer assisted surgery : MRCAS
40053904
BACKGROUND: At present, breast cancer has become the cancer with the highest incidence rate in the world. Breast intervention robot is an important biopsy or targeted therapy method for breast diseases.
High-attenuation (HA) artifacts may lead to obscured subtle lesions and lesion over-estimation in digital breast tomosynthesis (DBT) imaging. High-attenuation artifact suppression (HAAS) is vital for widespread DBT applications in clinic. The convent...
Purpose To test a commercial artificial intelligence (AI) system for breast cancer detection at the BC Cancer Breast Screening Program. Materials and Methods In this retrospective study of 136 700 female individuals (mean age, 58.8 years ± 9.4 [SD]; ...
This study develops a comprehensive framework that integrates computational fluid dynamics (CFD) and machine learning (ML) to predict milk flow behavior in lactating breasts. Utilizing CFD and other high-fidelity simulation techniques to tackle fluid...
Immunohistochemistry (IHC) examination is essential to determine the tumour subtypes, provide key prognostic factors, and develop personalized treatment plans for breast cancer. However, compared to Hematoxylin and Eosin (H&E) staining, the preparati...