OBJECTIVE: A deep learning algorithm was developed for automatic detection and localization of intracranial aneurysms in DSA, and its clinical characteristics were analyzed, and targeted nursing measures were formulated.
Computational intelligence and neuroscience
35733580
This study was aimed at investigating the application of deep learning 4D computed tomography angiography (CTA) combined with whole brain CT perfusion (CTP) imaging in acute ischemic stroke (AIS). A total of 46 patients with ischemic stroke were sele...
The purpose of the research was to discuss the application values of deep learning algorithm-based computed tomography perfusion (CTP) imaging combined with head and neck computed tomography angiography (CTA) in the diagnosis of ultra-early acute isc...
The accuracy of computed tomography angiography (CTA) image interpretation depends on the radiologist. This study aims to develop a new method for automatically detecting intracranial aneurysms from CTA images using deep learning, based on a convolut...
Interventional neuroradiology : journal of peritherapeutic neuroradiology, surgical procedures and related neurosciences
36457291
BACKGROUND: Digital subtraction angiography (DSA) is most commonly used in vessel disease examinations and treatments. We aimed to develop a novel deep learning-based method to deblur the large focal spot DSA images, so as to obtain a clearer and sha...
International journal of computer assisted radiology and surgery
36635594
PURPOSE: Collateral evaluation is typically done using visual inspection of cerebral images and thus suffers from intra- and inter-rater variability. Large open databases of ischemic stroke patients are rare, limiting the use of deep learning methods...
International journal of computer assisted radiology and surgery
36626087
PURPOSE: Intracranial aneurysms are vascular deformations in the brain which are complicated to treat. In clinical routines, the risk assessment of intracranial aneurysm rupture is simplified and might be unreliable, especially for patients with mult...
This study aimed to develop a machine learning model for predicting brain arteriovenous malformation (bAVM) rupture using a combination of traditional risk factors and radiomics features. This multicenter retrospective study enrolled 586 patients wit...
BACKGROUND: The morphological assessment of cerebral aneurysms based on cerebral angiography is an essential step when planning strategy and device selection in endovascular treatment, but manual evaluation by human raters only has moderate interrate...
BACKGROUND: Visual perception of catheters and guidewires on x-ray fluoroscopy is essential for neurointervention. Endovascular robots with teleoperation capabilities are being developed, but they cannot 'see' intravascular devices, which precludes a...