The estimation of rupture risk in Unruptured Intracranial Aneurysm (UIA) constitutes a major area of clinical interest due to the significant morbidity and mortality rates associated with aneurysm rupture. Classic clinical models based on factors suc...
OBJECTIVE: This study was to explore the factors associated with prolonged hospital length of stay (LOS) in patients with intracranial aneurysms (IAs) undergoing endovascular interventional embolization and construct prediction model machine learning...
BACKGROUND: Cerebral aneurysm rupture is a major cause of potential years of life lost. Research on rupture risk has often compared unruptured and ruptured aneurysms, with the implicit assumption that the rupture event does not significantly change a...
PURPOSE: Assessment of the stability of intracranial aneurysms is important in the clinic but remains challenging. The aim of this study was to construct a deep learning model (DLM) to identify unstable aneurysms on computed tomography angiography (C...
Intracranial aneurysms (IAs), an asymptomatic vascular lesion, are becoming increasingly common as imaging technology progresses. Subarachnoid hemorrhage from IAs rupture entails a substantial risk of mortality or severe disability. The early detecti...
Periventricular anastomosis (PA) is the characteristic collateral network in Moyamoya disease (MMD). However, PA aneurysms are rare, resulting in limited knowledge of their clinical significance. We aimed to elucidate the associated factors and clini...
PURPOSE: Subarachnoid haemorrhage is a potentially fatal consequence of intracranial aneurysm rupture, however, it is difficult to predict if aneurysms will rupture. Prophylactic treatment of an intracranial aneurysm also involves risk, hence identif...
Currently, the growing interest in radiomics within the clinical practice has prompted some researchers to differentiate the rupture status of intracranial aneurysm (IA) by developing radiomics-based machine learning models. However, systematic evide...
Cerebral aneurysm rupture, the predominant cause of non-traumatic subarachnoid hemorrhage, underscores the need for effective treatment and early detection methods. A study in Neurosurgical Review compared microsurgical clipping to endovascular thera...
RATIONALE AND OBJECTIVES: We aimed at developing and validating a nomogram and machine learning (ML) models based on radiomics score (Radscore), morphology, and PHASES to predict intracranial aneurysm (IA) rupture.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.