The precise segmentation of retinal vasculature is crucial for the early screening of various eye diseases, such as diabetic retinopathy and hypertensive retinopathy. Given the complex and variable overall structure of retinal vessels and their delic...
BACKGROUND/AIMS: Support vector machine-based automated grading (known as iGradingM) has been shown to be safe, cost-effective and robust in the diabetic retinopathy (DR) screening (DES) programme in Scotland. It triages screening episodes as gradabl...
BACKGROUND/OBJECTIVES: Anti-VEGF treatment response in DMO has been measured by changes in the central subfield thickness (CST) and best visual acuity (BVA) outcomes at 3 months after initial treatment, termed early or limited early response (ER/LER)...
Diabetic retinopathy (DR) poses a significant challenge in diabetes management, with its progression often asymptomatic until advanced stages. This underscores the urgent need for cost-effective and reliable screening methods. Consequently, the integ...
BACKGROUND: To apply machine learning (ML) algorithms to perform multiclass diabetic retinopathy (DR) classification using both clinical data and optical coherence tomography angiography (OCTA).
Endocrinology and metabolism (Seoul, Korea)
Jun 10, 2024
Diabetic retinopathy (DR) is a major complication of diabetes mellitus and is a leading cause of vision loss globally. A prompt and accurate diagnosis is crucial for ensuring favorable visual outcomes, highlighting the need for increased access to me...
Diabetic retinopathy (DR) is one of the leading causes of adult blindness in the United States. Although studies applying traditional statistical methods have revealed that heavy metals may be essential environmental risk factors for diabetic retinop...
BACKGROUND: Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus. The global burden is immense with a worldwide prevalence of 8.5%. Recent advancements in artificial intelligence (AI) have demonstrated the potential ...
Medical & biological engineering & computing
May 22, 2024
The current diagnosis of diabetic retinopathy is based on fundus images and clinical experience. However, considering the ineffectiveness and non-portability of medical devices, we aimed to develop a diagnostic model for diabetic retinopathy based on...
BACKGROUND/AIMS: National guidelines of many countries set screening intervals for diabetic retinopathy (DR) based on grading of the last screening retinal images. We explore the potential of deep learning (DL) on images to predict progression to ref...