AIMC Topic: Disease Resistance

Clear Filters Showing 1 to 10 of 17 articles

Integrating multi-omics and machine learning for disease resistance prediction in legumes.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Multi-omics assisted prediction of disease resistance mechanisms using machine learning has the potential to accelerate the breeding of resistant legume varieties. Grain legumes, such as soybean (Glycine max (L.) Merr.), chickpea (Cicer arietinum L.)...

Powdery mildew resistance prediction in Barley (Hordeum Vulgare L) with emphasis on machine learning approaches.

Scientific reports
By employing machine-learning models, this study utilizes agronomical and molecular features to predict powdery mildew disease resistance in Barley (Hordeum Vulgare L). A 130-line F8-F9 barley population caused Badia and Kavir to grow at the Gonbad K...

Artificial Intelligence-Assisted Breeding for Plant Disease Resistance.

International journal of molecular sciences
Harnessing state-of-the-art technologies to improve disease resistance is a critical objective in modern plant breeding. Artificial intelligence (AI), particularly deep learning and big model (large language model and large multi-modal model), has em...

Multiple, Single Trait GWAS and Supervised Machine Learning Reveal the Genetic Architecture of Fraxinus excelsior Tolerance to Ash Dieback in Europe.

Plant, cell & environment
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among gen...

Machine learning-based identification of general transcriptional predictors for plant disease.

The New phytologist
This study investigated the generalizability of Arabidopsis thaliana immune responses across diverse pathogens, including Botrytis cinerea, Sclerotinia sclerotiorum, and Pseudomonas syringae, using a data-driven, machine learning approach. Machine le...

PotatoG-DKB: a potato gene-disease knowledge base mined from biological literature.

PeerJ
BACKGROUND: Potato is the fourth largest food crop in the world, but potato cultivation faces serious threats from various diseases and pests. Despite significant advancements in research on potato disease resistance, these findings are scattered acr...

Integrated Assays of Genome-Wide Association Study, Multi-Omics Co-Localization, and Machine Learning Associated Calcium Signaling Genes with Oilseed Rape Resistance to .

International journal of molecular sciences
(Ss) is one of the most devastating fungal pathogens, causing huge yield loss in multiple economically important crops including oilseed rape. Plant resistance to Ss pertains to quantitative disease resistance (QDR) controlled by multiple minor gene...

Integrating genomics, phenomics, and deep learning improves the predictive ability for Fusarium head blight-related traits in winter wheat.

The plant genome
Fusarium head blight (FHB) remains one of the most destructive diseases of wheat (Triticum aestivum L.), causing considerable losses in yield and end-use quality. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and deoxynivaleno...

Effector translocation and rational design of disease resistance.

Trends in microbiology
The effector repertoire of a pathogen is dynamically evolving. However, the effector translocation mechanism, partly elucidated recently, may be conserved. By targeting the effector translocation machinery, rather than the individual evolving effecto...

A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits.

Plant communications
Lodging is a common problem in rice, reducing its yield and mechanical harvesting efficiency. Rice architecture is a key aspect of its domestication and a major factor that limits its high productivity. The ideal rice culm structure, including major_...