AIMC Topic: Drug Discovery

Clear Filters Showing 231 to 240 of 1502 articles

A Machine Learning Algorithm Suggests Repurposing Opportunities for Targeting Selected GPCRs.

International journal of molecular sciences
Repurposing utilizes existing drugs with known safety profiles and discovers new uses by combining experimental and computational approaches. The integration of computational methods has greatly advanced drug repurposing, offering a rational approach...

Research Progresses and Applications of Knowledge Graph Embedding Technique in Chemistry.

Journal of chemical information and modeling
A knowledge graph (KG) is a technique for modeling entities and their interrelations. Knowledge graph embedding (KGE) translates these entities and relationships into a continuous vector space to facilitate dense and efficient representations. In the...

Deep-Learning-Driven Discovery of SN3-1, a Potent NLRP3 Inhibitor with Therapeutic Potential for Inflammatory Diseases.

Journal of medicinal chemistry
The NLRP3 inflammasome plays a central role in the pathogenesis of various intractable human diseases, making it an urgent target for therapeutic intervention. Here, we report the development of SN3-1, a novel orally potent NLRP3 inhibitor, designed ...

SSR-DTA: Substructure-aware multi-layer graph neural networks for drug-target binding affinity prediction.

Artificial intelligence in medicine
Accurate prediction of drug-target binding affinity (DTA) is essential in the field of drug discovery. Recently, scientists have been attempting to utilize artificial intelligence prediction to screen out a significant number of ineffective compounds...

In Silico Insights: QSAR Modeling of TBK1 Kinase Inhibitors for Enhanced Drug Discovery.

Journal of chemical information and modeling
TBK1, or TANK-binding kinase 1, is an enzyme that functions as a serine/threonine protein kinase. It plays a crucial role in various cellular processes, including the innate immune response to viruses, cell proliferation, apoptosis, autophagy, and an...

GPCRSPACE: A New GPCR Real Expanded Library Based on Large Language Models Architecture and Positive Sample Machine Learning Strategies.

Journal of medicinal chemistry
The quest for novel therapeutics targeting G protein-coupled receptors (GPCRs), essential in numerous physiological processes, is crucial in drug discovery. Despite the abundance of GPCR-targeting drugs, many receptors lack selective modulators, indi...

Combined Physics- and Machine-Learning-Based Method to Identify Druggable Binding Sites Using SILCS-Hotspots.

Journal of chemical information and modeling
Identifying druggable binding sites on proteins is an important and challenging problem, particularly for cryptic, allosteric binding sites that may not be obvious from X-ray, cryo-EM, or predicted structures. The Site-Identification by Ligand Compet...

Automated design of multi-target ligands by generative deep learning.

Nature communications
Generative deep learning models enable data-driven de novo design of molecules with tailored features. Chemical language models (CLM) trained on string representations of molecules such as SMILES have been successfully employed to design new chemical...

Kinase Drug Discovery: Impact of Open Science and Artificial Intelligence.

Molecular pharmaceutics
Given their central role in signal transduction, protein kinases (PKs) were first implicated in cancer development, caused by aberrant intracellular signaling events. Since then, PKs have become major targets in different therapeutic areas. The prefe...

An artificial intelligence accelerated virtual screening platform for drug discovery.

Nature communications
Structure-based virtual screening is a key tool in early drug discovery, with growing interest in the screening of multi-billion chemical compound libraries. However, the success of virtual screening crucially depends on the accuracy of the binding p...