BACKGROUND: Optimal timing for initiating maintenance dialysis in patients with chronic kidney disease (CKD) stages 3-5 is challenging. This study aimed to develop and validate a machine learning (ML) model for early personalised prediction of mainte...
BMC medical informatics and decision making
Apr 25, 2024
OBJECTIVE: This study aimed to construct a coronary heart disease (CHD) risk-prediction model in people living with human immunodeficiency virus (PLHIV) with the help of machine learning (ML) per electronic medical records (EMRs).
International journal of antimicrobial agents
Apr 19, 2024
OBJECTIVES: Colistin-induced nephrotoxicity prolongs hospitalisation and increases mortality. The study aimed to construct machine learning models to predict colistin-induced nephrotoxicity in patients with multidrug-resistant Gram-negative infection...
Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes including efficacy and toxicity, thereby supporting the assessment and safety of drugs. A key benefit of causal ML is that it allows for estimating in...
BACKGROUND: Although patients have easy access to their electronic health records and laboratory test result data through patient portals, laboratory test results are often confusing and hard to understand. Many patients turn to web-based forums or q...
BACKGROUND: Abstract review is a time and labor-consuming step in the systematic and scoping literature review in medicine. Text mining methods, typically natural language processing (NLP), may efficiently replace manual abstract screening. This stud...
OBJECTIVE: To develop a natural language processing (NLP) package to extract social determinants of health (SDoH) from clinical narratives, examine the bias among race and gender groups, test the generalizability of extracting SDoH for different dise...
Research in social & administrative pharmacy : RSAP
Apr 10, 2024
OBJECTIVE: Medication management of patients with polypharmacy is highly complex. We aimed to validate a novel Artificial Pharmacology Intelligence (API) algorithm to optimize the medication review process in a comprehensive, personalized, and scalab...
BACKGROUND AND AIMS: The impact of various categories of information on the prediction of post-ERCP pancreatitis (PEP) remains uncertain. We comprehensively investigated the risk factors associated with PEP by constructing and validating a model inco...
BACKGROUND:  Venous thromboembolism (VTE) is a chronic disorder with a significant health and economic burden. Several VTE-specific clinical prediction models (CPMs) have been used to assist physicians in decision-making but have several limitations....
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.