AIMC Topic: Electrooculography

Clear Filters Showing 1 to 10 of 56 articles

Cognitive Load Prediction From Multimodal Physiological Signals Using Multiview Learning.

IEEE journal of biomedical and health informatics
Predicting cognitive load is a crucial issue in the emerging field of human-computer interaction and holds significant practical value, particularly in flight scenarios. Although previous studies have realized efficient cognitive load classification,...

Data-driven sleep structure deciphering based on cardiorespiratory signals.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Cardiorespiratory signals provide a novel perspective for understanding sleep structure through the physiological mechanism of cardiopulmonary coupling. This mechanism divides the coupling spectrum into high-frequency (HF) a...

Brain-Computer Interface-controlled Upper Limb Robotic System for Enhancing Daily Activities in Stroke Patients.

Journal of visualized experiments : JoVE
This study introduces a Brain-Computer Interface (BCI)-controlled upper limb assistive robot for post-stroke rehabilitation. The system utilizes electroencephalogram (EEG) and electrooculogram (EOG) signals to help users assist upper limb function in...

Eye movement detection using electrooculography and machine learning in cardiac arrest patients.

Resuscitation
AIM: To train a machine learning algorithm to identify eye movement from electrooculography (EOG) in cardiac arrest (CA) patients. Neuroprognostication of comatose post-CA patients is challenging, requiring novel biomarkers to guide decision making. ...

Continuous real-time detection and management of comprehensive mental states using wireless soft multifunctional bioelectronics.

Biosensors & bioelectronics
Quantitatively measuring human mental states that profoundly affect cognition, behavior, and recovery would revolutionize personalized digital healthcare. Detecting fatigue, stress, and sleep is particularly important due to their interdependence: pe...

Multimodal machine learning for deception detection using behavioral and physiological data.

Scientific reports
Deception detection is crucial in domains like national security, privacy, judiciary, and courtroom trials. Differentiating truth from lies is inherently challenging due to many complex, diversified behavioural, physiological and cognitive aspects. T...

A Multimodal Consistency-Based Self-Supervised Contrastive Learning Framework for Automated Sleep Staging in Patients With Disorders of Consciousness.

IEEE journal of biomedical and health informatics
Sleep is a fundamental human activity, and automated sleep staging holds considerable investigational potential. Despite numerous deep learning methods proposed for sleep staging that exhibit notable performance, several challenges remain unresolved,...

Residual Self-Calibrated Network With Multi-Scale Channel Attention for Accurate EOG-Based Eye Movement Classification.

IEEE journal of biomedical and health informatics
Recently, Electrooculography-based Human-Computer Interaction (EOG-HCI) technology has gained widespread attention in industrial areas, including assistive robots, augmented reality in gaming, etc. However, as the fundamental step of EOG-HCI, accurat...

CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging.

IEEE journal of biomedical and health informatics
Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signal...

AFSleepNet: Attention-Based Multi-View Feature Fusion Framework for Pediatric Sleep Staging.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
The widespread prevalence of sleep problems in children highlights the importance of timely and accurate sleep staging in the diagnosis and treatment of pediatric sleep disorders. However, most existing sleep staging methods rely on one-dimensional r...